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Spectral Moment Features Augmented by Low
Order Cepstral Coefficients for Robust ASR
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Abstract—We propose a novel ASR front-end, that consists of
the first central Spectral Moment time-frequency distribution
Augmented by low order Cepstral coefficients (SMAC). We
prove that the first central spectral moment is proportional
to the spectral derivative with respect to the filter’s central
frequency. Consequently, the spectral moment is an estimate of
the frequency domain derivative of the speech spectrum. However
information related to the entire speech spectrum, such as the
energy and the spectral tilt, is not adequately modeled. We
propose adding this information with few cepstral coefficients.
Furthermore, we use a mel-spaced Gabor filterbank with 70 %
frequency overlap in order to overcome the sensitivity to pitch
harmonics. The novel SMAC front-end was evaluated for the
speech recognition task for a variety of recording conditions. The
experimental results have shown that SMAC performs at least as
well as the standard MFCC front-end in clean conditions, and
significantly outperforms MFCCs in noisy conditions.

Index Terms—First Spectral Moment, Low Order Cepstral
Coefficients, SMAC, Robust Speech Recognition

I. INTRODUCTION

OST of the features used for automatic speech recogni-

tion, try to capture the time-frequency information from
the speech signal, either by employing a filterbank analysis,
or through parametric modeling. Indeed the widely used Mel
Frequency Cepstral Coefficients (MFCC) front-end is based
on a time-frequency energy distribution. It employs discrete
cosine transformation (DCT) in the frequency domain for
decorrelation of the feature vector. The first and second order
time domain derivatives are usually included.

A theoretical analysis of the time-frequency distributions for
automatic speech recognition can be found in [1], where short-
time averages from various time-frequency distributions are
shown to be equivalent under certain conditions. The first three
spectral moments, namely the zeroth, first, and second, are
respectively metrics for energy, frequency and bandwidth [2].
Energy related features, such as the established MFCCs, are
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dominant in speech applications. Frequency related features
have also been considered in various speech applications.
Frequency estimates are distributed densely in spectral peak
and sparsely in spectral valley regions. This time-frequency
distribution, is known as pyknogram, and was introduced for
the speech formant estimation task [3]. Pyknogram based
features were recently proposed for speaker identification [4].
Spectral moment based frequency features have been proposed
for robust speech recognition [5]. Time domain frequency
and bandwidth related features were also exploited for ro-
bust speech recognition as additional features to the standard
feature vector [6]. Gaussian modeling of the smooth spectral
envelope was also investigated for speech recognition [7].

In this letter, we propose a novel time-frequency driven
front-end for automatic speech recognition. The proposed
front-end retains the frequency domain representation and
provides a zero mean feature vector, facilitating a variety of
robust speech recognition algorithms, e.g., frequency warping,
spectral mask application, multi-band analysis, vocal tract
normalization etc. It is based on the first spectral moment and
augmented by few low order cepstral coefficients — SMAC.
The spectral moment component captures information about
the resonances of the speech signal under the notion of the
pyknogram. However, solely the pyknogram does not model
the relative importance of each resonance. This could be why
previous attempts to use frequency only based front-ends,
usually have worse recognition performance for the clean
speech and well matched cases [5], [8]. For this reason SMAC
also incorporates low order cepstral coefficients, to capture the
rough spectral envelope. The spectral moment components are
sampled in the standard Mel frequency scale, with a Gabor
filterbank. Moreover, we investigate the number of necessary
coefficients for the spectral envelope estimation, as well as
the filterbank parametrization to overcome the sensitivity to
the pitch harmonics reported in previous studies [5].

IT. CENTRAL SPECTRAL MOMENT ESTIMATION

Assume that the discrete- short-time speech signal x:(n) is
filtered by a bank of K band-passed filters with center frequen-
cies wg. The resulting band-passed signals zx(n), k=1... K
in time and frequency domain are given by

zE(n) = z(n) x hy(n) < Xg(w) = X(w)Hi(w) (1)

where hy(n) is the impulse response and Hy(w) the frequency
response of the k-th filter. The generalized m-th spectral
moment, and central spectral moment of each signal xy(n),
for an arbitrary constant -, are respectively defined as



IEEE SIGNAL PROCESSING LETTERS, VOL. X, NO. X, XXXX XXXX, MANUSCRIPT #: SPL-07679-2009.R1 2

§™ (k) = / X )] @)
0
sr = [ @l w-w)mde G
0
The respective normalized moments are defined as
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From (2)-(5) stems S (k) = S9(k) and N} (k) = N1(k)—wg.

The zero order spectral moment SO for v = 2 yields
the spectral filterbank energies, which are usually used in
the MFCC derivation. The first spectral moment (N') tracks
the weighted average formant frequency in each band, and
it has also been used for speech recognition [1], [5]. Time
domain equivalent estimations have been also used for speech
recognition [1], [6], [9].

A. Spectral Moment Estimation with a Gabor Filterbank

Assuming hy(n) is the impulse response of the real Gabor
filter, the frequency response can be expressed as

Hy () = (v/7/20) (0w 40 | o= (otan/a0) - (q)

where « is a parameter controlling the filter’s bandwidth. The
spectral moment estimation usually considers only the positive
frequency component, since the integration is performed in the
positive frequencies

H;_(w) = (\/7?/205)67(“*&)1«)2/4&2 )

We prove that under the above assumption the first central
spectral moment S} (k) is proportional to the derivative of the
zero order spectral moment S°(k) with respect to the filter’s
central frequency wy. Starting from the definition of S°(k) in
(2), and taking the derivative with respect to wy we have

dS°(k) d (™ T d| X ()]
= — X Y — - v 7
don dor /. | X (W) dw /0 door dw
™ H+ ¥
2/ ‘X(w)pwdw (8)
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The derivative of H," (w) with respect to wy, is

d|H,f (w)]”
dwk
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Replacing (9) in (8) we get
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It simply follows that
202 dS°(k
Si(k) ~ 200 25(0) (1n

v dwg
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Fig. 1. (a): A 25-ms speech frame (phoneme /ae/, male speaker). (b) The
corresponding DFT spectrum (up to 4kHz), and superimposed the first spectral
moment estimations for two mel-spaced Gabor filterbanks with constant
bandwidth of 118 and 236 Mels respectively. The spectral moment estimates
are shown with stars / dashed-dotted lines for the narrow filterbank, and with
circles / vertical solid lines for the wide one. The filterbank center frequencies
are shown with triangles on the x axis.

Furthermore, the first normalized central spectral moment is
proportional to the derivative of the logarithm of the zero order
spectral moment (log power spectrum) with respect to wy:

NI(k) ~ 202 dSO(k) _ Q;Oﬂdlog(SO(k‘))
‘ VS0(k) - dwy, g

Eq. (12) identifies the close relationship between N} (k) and
the log power spectrum, which is used in the standard MFCC
front-end. This result also explains the pyknogram structure: if
the filter frequency is centered before (after) the spectral peak,
the derivative in (12) is positive (negative), so the estimate
moves towards the spectral peak (see Fig. 1(b)). Eq. (12) also
reveals the importance of the filter’s bandwidth, i.e. the smaller
the parameter o, the closer the estimate N (k) will be to the
center frequency wy, (o« — 0 = N1 (k) = 0= N1(k) = wp).

B. Sensitivity to the pitch harmonics

Eq. (12) implies sensitivity of the spectral moment estima-
tion to the harmonics of the fundamental frequency, if the
filter’s bandwidth is narrow. In such a case the estimation
will select the strongest harmonic within the filter’s band-
width. This can be seen in Fig. 1(b), where we plot the first
spectral moment estimates (N*(k)) for two mel-spaced Gabor
filterbanks with different bandwidths. Both filterbanks have
constant bandwidth on the Mel scale. The bandwidth of the
first one is set to 118 Mels, which is roughly equivalent to
the standard triangular filterbank with 50% overlap. While
the second one, the bandwidth is set to 236 Mels (equivalent
to a 70% overlap). One can clearly see, that the frequency
estimations for the narrow filterbank are placed at the pitch
harmonics closest to the filters’ center frequency. This is more
pronounced in the lower filters that are narrower. On the other
hand, the frequency estimations for the wide filterbank are
more biased towards the formant frequency. This is mirrored in
the distribution of the estimates, which are more dense around
formants for the wider filterbank. Wideband analysis could be
a potential solution to the problem. However factors such as,



IEEE SIGNAL PROCESSING LETTERS, VOL. X, NO. X, XXXX XXXX, MANUSCRIPT #: SPL-07679-2009.R1 3

a) the reduced frequency resolution, b) modulation effects in
the voiced regions, and c) increased number of frames for the
calculation of derivative features, introduce further complexity.

C. Estimation under Noise

The ability of the first spectral moment to track the local
spectral peaks makes it a perfect candidate for estimation in
noisy conditions, where the spectral peaks are not seriously af-
fected. Fig. 2(d) shows a pyknogram example for an utterance
from TIMIT corrupted with additive babble noise at 5dB (the
noise signal was extracted from the NoiseX92 database). The
spectrogram of the noise corrupted speech signal is shown
Fig. 2(b). For comparison we also show the spectrogram
and pyknogram of the original speech signal in Fig. 2(a),(c)
respectively. For visualization purposes, the pyknograms were
constructed using a Gabor filterbank with 64 linearly spaced
filters up to 4kHz, and constant bandwidth of 400Hz. One can
see in Fig. 2, that the spectral moment estimation is noise
robust. The frequency estimation is not seriously affected,
provided that the local spectral peak stays above the noise.

III. THE SMAC FRONT-END

The SMAC front-end consists of the first normalized central
spectral moment (N}, v = 2) and few low order cepstral
coefficients. The spectral moment component captures the
resonance structure of the speech signal under the notion of the
pyknogram (Fig. 2(c)). This is equivalent with a flat spectral
estimation, since the information for the relative importance
of each resonance is lost. For this reason the pyknogram is
augmented by few low order cepstral coefficients, to capture
the rough spectral envelope. Alternative estimations of both
signal energy and rough envelope can also be used. No further
transformation such as DCT is performed, since the spectral
moment components are mostly uncorrelated [9].

As we saw in the previous section, the estimation of the
first spectral moment is sensitive to the pitch harmonics if
the filter is narrow, which is not a desired behavior for the
speech recognition task. For this reason, for the computation
of spectral moments we propose to increase the frequency
overlap between adjacent filters of the filterbank. Previous
studies address this problem by either reducing the number
of filters used, or by using linearly spaced filterbanks [5], [6],
[8]. Filterbanks with large frequency overlap have also been
used for formant tracking [3], and speaker identification [4].

In the SMAC feature extraction process we employ a mel-
spaced Gabor filterbank', having 12 filters up to 4kHz in the
narrow-band speech case (8kHz), and 16 filters up to 8kHz
in the wide-band case (16kHz). Although, similar or better
performance could be achieved with more filters, we constrain
the number of filters to retain a low feature vector dimension.
The overlap between adjacent filters is controlled by adjusting
their bandwidth. A constant bandwidth of 236 Mels was
experimentally found to be close to the optimal value [9]. For
simplicity, the same filterbank is used for extracting the low
order cepstral coefficients that augment the feature vector. We

I Different filter types with proper bandwidths would perform similarly.

have experimentally determined that adding the zero and first
order cepstral coefficients (CO, C1) improves performance. CO
and C1 incorporate information about the signal energy and
spectral tilt respectively. The addition of more coefficients
offers little improvement or even degradation. Finally, the
standard delta and delta-delta features are appended to the
SMAC vector. Henceforth, we use the term SMAC to refer to
the front-end that uses 16 filters up to 8kHz or 12 up to 4kHz,
and includes only CO and C1, unless indicated otherwise.

1V. EXPERIMENTAL RESULTS
A. Clean Recording Conditions

Performance was evaluated for the TIMIT phone recog-
nition task (16kHz). 3-state context-independent phonemic
HMM with a mixture of 16 Gaussians per state were trained
using 4 reestimation iterations, using the HTK framework.
The full train and test sets of the TIMIT database were used.
The original phoneme set (61 phonemes) was used for the
training process, which for the test process was mapped to the
standard phoneme set with 39 phonemes. In this experiment
we evaluated also the number of filters, as well as the number
of additional cepstral coefficients in the SMAC feature vector
(noted by the trailing number). For comparison purposes we
also include experimental results for the spectral moment vec-
tor without any additional cepstral coefficient - SM, as well as
for the MFCC feature vector with and without CO. The results,
summarized in Table I, show that the SMAC features perform
slightly better than the MFCC features (some differences are
not statistically significant). We conclude that adding only CO
and C1 to the SMAC feature vector is sufficient.

TABLE I
PHONE RECOGNITION RATES (%) ON THE TIMIT DATABASE.

16 filters 20 filters 26 filters
MEFCC (no CO0) 64.09 64.38 64.48
SM 65.00 65.25 64.66
MECC 67.61 67.59 67.73
SMACO (SM+CO0) 68.00 68.22 67.52
SMACI1 (SM+C0-C1) 68.66 68.63 68.40
SMAC2 (SM+C0-C2) 68.73 68.96 68.68
SMAC3 (SM+C0-C3) 68.66 69.06 68.84

B. Additive Noise Conditions

The SMAC front-end was also evaluated in additive noise
conditions, and compared to the MFCC front-end, the PLP
front-end [10] and the RASTA-PLP front-end [11]. The MFCC
and SMAC front-ends were also compared when noise sup-
pression via Wiener Filtering (WF) was employed [12].

We conducted word recognition experiments on the AU-
RORA 2 database (8 kHz), which contains artificially cor-
rupted speech with various types of noise at different levels.
Context-independent, 16-state, left-right word HMMs with 3
Gaussian mixtures per state were used (no grammar was used).
The models were trained on the clean training set and tested
for all noisy test sets. The recognition rates averaged per noise
level across all noise types are shown in Table II. The SMAC
front-end performs significantly better than the MFCC and
PLP front-ends across all noise levels, and slightly better than
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Fig. 2. Spectrogram vs Pyknogram. (a) the spectrogram of TIMIT utterance, (c) its pyknogram, (b),(d) spectrogram and pyknogram under 5dB babble noise.

RASTA-PLP. SMAC also outperforms MFCC when WF noise
suppression is applied (on both train and test data sets).

TABLE 11
AURORA 2 WORD RECOGNITION RATES

20dB 15dB 10 dB 5dB
MEFCC (39)* 94.07 85.04 65.51 38.45
PLP (39) 94.16 85.30 67.14 41.18
RASTA-PLP (39) 96.66 92.04 77.13 45.18
SMAC (42) 97.05 93.05 78.78 46.48
WF+MFCC (39) 97.70 95.31 89.13 74.37
WF+SMAC (42) 97.52 95.69 90.75 77.46

*The feature vector size is shown next to each front-end.

Furthermore, we present recognition results on the con-
nected digit recognition task of the AURORA 3 database (8
kHz), using the same configuration as in the AURORA 2 ex-
periment. Table III summarizes the results for the Spanish and
Italian tasks, for well-matched (WM), medium-mismatched
(MM), and high-mismatched (HM) noise conditions.

TABLE III
AURORA 3 WORD RECOGNITION RATES

Spanish Task Italian Task

WM MM HM WM MM HM
MFCC (39) 86.88 7372 4223 93.64 82.02 39.84
PLP (39) 92.04 83.84 5272 8824 7251 3898
RASTA-PLP (39) 9394 8825 7293 8376 7527 63.33
SMAC (42) 9425 89.21 77.68 88.14 8230 51.63
WEF+MFCC (39) 9484 8831 7832 9589 89.81 73.52
WF+SMAC (42) 9487 91.09 81.65 9143 8642 62.23

The SMAC features perform significantly better in all noise
conditions for the Spanish task, for both the baseline and the
WEF case. The results on the Italian task show a mixed behavior
in the baseline case; MFCC is better in the WM, SMAC
in the MM, and RASTA-PLP in the HM case. Including
WE, the MFCC front-end outperforms SMAC. However, the
Italian task results for SMAC and RASTA-PLP front-ends
were greatly affected by unbalanced insertion/deletion ratios.

In general, the SMAC front-end improves over the MFCCs
as the SNR decreases. Similar conclusions can be drawn from
preliminary large vocabulary recognition experiments on the
Wall Street Journal Aurora 4 database.

V. CONCLUSION

We proposed the use of the first central Spectral Moment
Augmented by low order Cepstral coefficients (SMAC), as
an alternative ASR front-end. The innovation introduced by
the SMAC front-end is twofold. First, the augmentation of
the spectral moment with few low order cepstral coefficients,
reintroduces the coarse spectral envelope information in the
feature vector. Second, the use of a Gabor filterbank with
larger bandwidth alleviates the sensitivity of the spectral
moment estimation to the pitch harmonics. We evaluated the
proposed front-end in clean and noisy speech recognition
tasks. The results have shown that the SMAC front-end
performs similarly to the standard front-end in clean recording
conditions, and outperforms it for a wide range of noisy tasks.
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