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Abstract — Nowadays, unit selection based text-to-speech 

technology is the mainstream approach for near natural 
speech synthesis systems. However, this is achieved at the 
expense of raised requirements in terms of computational 
resources. This work describes design and implementation 
approaches for the efficient integration of this technology in 
computational environments with limited resources, such as 
mobile devices, with no considerable speech quality 
degradation. In particular, the issues of database reduction, 
acoustic inventory compression and runtime computational 
load minimization are mainly addressed in this paper. Both 
objective and subjective assessments confirm the effectiveness 
of these approaches in terms of constructing a general 
purpose embedded unit selection TTS system and reducing the 
computational requirements while maintaining high speech 
quality1.        
 

Index Terms — Embedded Speech Synthesis, Unit Selection, 
Text-to-Speech, Mobile Devices, Mobile Phones.  

I. INTRODUCTION 
Text-to-Speech (TTS) technology deals with the production 

of synthetic voice output using textual information, thus 
serving as a more natural interface in human machine 
interaction. In order for TTS technology to be widely adopted, 
near-natural voice output quality has to be achieved. Over the 
last years, significant research progress in the field has 
contributed towards this goal. Nowadays, unit selection 
concatenative speech synthesis technology has become the 
dominant approach for building naturally sounding text-to-
speech systems. This technique relies on runtime selection and 
compilation of speech units from a large speech database [1]. 
The speech database usually consists of a sufficient corpus of 
appropriately selected naturally spoken utterances, carefully 
annotated to the unit level. In most cases the speech units are 
phonemes or diphones. Each utterance comes from a text 
corpus designed to cover as many units as possible in different 
phonetic and prosodic contexts. The resulting repository of 
speech units may have little or great redundancy, on which 
speech variability and overall quality is significantly depended 
[1]. The drastic improvement in quality of synthetic speech, 
namely naturalness and intelligibility, over the years has led to 
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the adoption of TTS as a mainstream technology. As a result, 
TTS technology is now employed in a wide range of 
applications, spanning from assistive technology and 
education, to telecommunications and entertainment [2]-[5]. 
However, this usually comes at the cost of large resource 
repositories and increased processing power, limiting the 
applications in desktop or server-based environments and 
therefore prohibiting its use on embedded or portable devices. 
Yet, the ever increasing demand for enhanced consumer 
applications and the extensive use of portable devices such as 
mobile phones or personal digital assistants (PDA) in 
everyday’s life, have intensified the need to efficiently adapt 
TTS technology in environments with limited computational 
resources. For example, application areas such as assistive 
aids and tools, speech-to-speech translation, robotics, mobile 
phones, household devices, navigation and personal guidance 
gadgets, can largely benefit from the more natural and 
intuitive means of human computer interaction (HCI) offered 
by speech [6]-[10]. 

In order to address the challenge of developing a high 
quality TTS system for embedded devices, several approaches 
have been considered, regarding not only the adaptation of 
unit selection TTS but also the underlying technology itself. In 
reference to the technology, there are several different 
approaches for building low footprint TTS systems. Solutions 
include diphone-based TTS where the speech stimuli are 
comprised of only one instance of every diphone, and 
parametric TTS, such as Formant-based or HMM-based [1], 
[11]-[13]. Even though both diphone-based and formant-based 
TTS systems are well suited for low resource TTS, they suffer 
from degraded speech quality which is often not acceptable 
for mainstream consumer products [11]. On the other hand, 
recent results have shown that statistical parametric speech 
synthesis based on Hidden Markov Models (HMM-based 
TTS) can deliver high quality synthetic speech with reduced 
demands for computational resources, and hence can 
efficiently be adopted for portable devices [12]. 

Nevertheless, unit selection TTS is still the dominant 
approach for high quality speech synthesis, and therefore its 
efficient adaption to environments with reduced 
computational resources is of great interest so long as the 
speech quality is preserved. Recent research in this field has 
been mainly concentrated on optimizing several aspects of the 
speech synthesis procedure. These aspects include speech 
database reduction and compression for unlimited domain 
speech synthesis, speech signal parameterization and runtime 
synthesis optimization [11]-[16]. Approaches for limited 



 

domain speech synthesis (that is, domain-specific speech 
databases e.g., weather forecast) have also been proposed 
[17]. In summary, the most important issues of embedded unit 
selection TTS, relate to the objective of efficiently balancing 
the requirements regarding the computational load and the 
available resources together with delivering high quality 
speech. 

In this paper, we describe design and implementation 
approaches for integrating generic domain unit selection TTS 
technology in environments with limited resources and 
computational capabilities such as mobile phones. More 
particularly, emphasis is given in three main issues. Firstly, 
we detail on the development of a specific methodology for 
the construction of a speech database for embedded devices, 
based on the existing databases utilized in the server-based or 
desktop-based versions of the corresponding TTS systems. 
The method relies on statistical analysis on the data derived 
from the unit selection stage on a large text corpus and 
employs, not only the selection frequencies, but also the unit 
selection scores of the units, leading to enhanced coverage and 
reduced redundancy. Secondly, we focus on the compression 
and coding of the speech units, aiming to efficient storage and 
retrieval, as well as to final signal quality during synthesis 
runtime. For this purpose, a code excited linear prediction 
(CELP) based approach is utilized and adapted to the 
particular needs of the TTS system. Finally, the last aspect we 
cover is the minimization of the computational requirements 
inherent to the unit selection module. The latter module 
performs a computationally demanding search to determine 
the optimal sequence among candidate speech units. To 
reduce the runtime computational load, we adopted a vector 
quantization (VQ) approach for the spectral join feature 
vectors of the same speech units and the offline computation 
of the corresponding distances. Evaluation results made clear 
that the aforementioned processes perform efficiently, leading 
successfully to a commercial TTS system for mobile phones 
of very high quality.                  

The rest of this paper is organized as follows. In section II, 

the unit selection concatenative speech synthesis technology is 
briefly reviewed and a description of the embedded TTS 
system architecture is given, highlighting its core modules. 
Section III provides details on the proposed design and 
implementation for database reduction and compression, as 
well as the minimization of the computational requirements 
related to the unit selection module. In section IV, both 
subjective and objective evaluation results are presented 
regarding the assessment of the followed techniques. Finally, 
a summary and some conclusive remarks are given in section 
V.           

II. EMBEDDED TEXT TO SPEECH SYSTEM ARCHITECTURE 
The general architectural diagram of a corpus-based TTS 

system is depicted in Fig. 1. There are two main components 
that comprise such a system, namely the Natural Language 
Processing (NLP) and the Digital Signal Processing (DSP). 
This diagram is valid for every data driven (that is, corpus-
based) TTS system, regardless of the underlying technology 
(e.g., unit selection or parametric). The NLP component 
accounts for every aspect of the linguistic processing of the 
input text, whereas the DSP component accounts for speech 
signal manipulation and generation. For a unit selection TTS, 
besides the speech units (usually diphones) the speech 
database contains all the necessary data for the unit selection 
stage of the synthesis [1], [5].  

In particular, the NLP component is mainly responsible for 
parsing, analyzing and transforming the input text into an 
intermediate symbolic format, appropriate to feed the DSP 
component. Furthermore, it provides all the essential 
information regarding prosody, that is, pitch contour, 
durations and intensity. It is usually composed of a text parser, 
a morpho-syntactic analyzer, a text normalizer, a letter-to-
sound module and a prosody generator. All these sub-
components are necessary for the disambiguation and proper 
expansion of all abbreviations and acronyms, for the correct 
word pronunciation, and also for the detection and application 
of the rich set of distinctive features of the speech signal, 
closely related to prosody. 

The DSP component comprises of all the essential modules 
for the proper manipulation of the speech signal, that is, 
prosodic analysis and modification, speech signal 
representation and generation. Among various algorithms for 
speech manipulation, Time Domain Pitch Synchronous 
Overlap Add (TD-PSOLA), Harmonic plus Noise (HNM), 
Linear Prediction based (LPC-based) and Multiband 
Resynthesis Overlap Add (MBROLA) are the ones that are 
mostly employed [1]. The DSP component also includes the 
unit selection module, which performs the selection of the 
speech units from the speech database using explicit matching 
criteria. More details about this module are given later in this 
section. 

It becomes apparent that a full scale deployment of a unit 
selection TTS system is either infeasible or impractical in 
embedded environments. The system architecture that we 
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Fig. 1.  General architectural diagram of a corpus-based TTS 
system.  



 

adopted for embedded unit selection speech synthesis is 
shown in Fig. 2. The core modules of our system are briefly 
described in the remainder of this section, while in section III, 
the adaptation techniques are explained. 

A. NLP 
As shown in Fig. 2, the input text is fed into the parsing 

module, where sentence boundaries are identified and 
extracted. This step is important since all remaining modules 
perform only sentence-level processing. The identified 
sentences are then fully expanded by the text normalization 
module. Besides numbers, abbreviations and acronyms, care 
has to be taken regarding the special characteristics of 
embedded environments (e.g., mobile phones). For such cases, 
particular care must be taken for the proper manipulation and 
expansion of special cases such as abbreviated menu options, 
stress disambiguation and alternative ways of text writing 
(e.g., multilingual, misspelled or transliterated such as in the 
case of greeklish [18]). To deal with these issues, the text 
normalization module relies on a rule-based approach 
combined with lexicon resources. A detailed presentation of 
these issues is beyond the scope of this paper and can be 
found at the given references [18], [19]. The letter-to-sound 
module transforms the expanded text in an intermediate 
symbolic form related to phonetic description. Most often, the 
module relies on a rule-based approach with limited 
computational requirements [19], complemented when 
necessary by exception dictionaries. The same approach is 
followed regarding prosody analysis, where pitch patterns are 
extracted by a large corpus analysis.             

B. DSP 
The DSP component comprises of the unit selection module 

and the signal manipulation module, in our case one based on 
TD-PSOLA. The speech database of the embedded TTS 
system uses a sampling frequency of 16 KHz. The database 
includes diphones as principal speech units, derived from the 
recordings of a Greek female professional speaker. 

The unit selection module is considered to be one of the 

most important components in a corpus-based unit selection 
concatenative speech synthesis system. It provides a 
mechanism to automatically select the optimal sequence of 
database units that produce the final speech output, the quality 
of which depends on its efficiency. The criterion for 
optimizing is the minimization of a total cost function which is 
defined by two partial cost functions, namely the target cost 
and the concatenation cost function [1], [5].   

The target cost function measures the similarity of an 
applicant unit with its predicted specifications (from NLP) and 
is defined as, 
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jw is a weighting factor for every partial target 
cost. The target feature vector typically employs target values 
for prosody and contextual features. The concatenation (or 
join) cost function accounts for the acoustic matching between 
pairs of consecutive candidate units and is defined as, 
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the join feature vector and c
jw is a weighting factor for every 

partial join cost. The feature vector typically consists of 
spectral similarity measures, pitch similarity measures, context 
similarity etc. Hence, the total cost is defined as, 
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 where, tW and cW are the weights that denote the significance 
of the target cost and the join cost, respectively. The goal of 
the unit selection module is to perform a (computationally 
demanding) search so as to find the speech unit sequence 
which minimizes the total cost, hence to specify, 

1
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The selection of the optimal speech unit sequence incorporates 
a thorough search (usually a Viterbi search) which involves 
comparisons and calculations of similarity measures between 
all available units, often employing heuristics to guide and/or 
limit the search [1], [5]. 

III. ADAPTATION TECHNIQUES FOR EMBEDDED DEVICES 
For the efficient adaptation and integration of unit selection 

TTS technology in embedded environments, a balance must 
be stroke between the conflicting demands of minimizing the 
computational load while preserving a high-quality speech 
output. In most of the cases, computational load increases in 
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Fig. 2.  System architecture for the embedded unit selection TTS 
system. 



 

proportion to the speech database size. As already mentioned, 
desktop- or server-based TTS systems involve large speech 
databases. To avoid building a speech database from scratch, 
effective scaling-down can be achieved by employing speech 
database reduction techniques. Furthermore, the resulting 
speech database should be compressed and encoded in a way 
suitable for synthesis runtime. Moreover, the computational 
requirements of the unit selection module need to be reduced. 
In the following sections, techniques to cope with these 
problems are described. 

A. Speech Database Reduction  
The method relies on statistical data produced by the full 

scale unit selection process on a large text corpus, initially 
proposed in [16]. It utilizes the selection frequency, as well as 
the actual score of each speech unit (diphone). As outlined in 
[15] the strategies usually fall in two categories: the top-down 
and the bottom-up approaches. According to the top-down 
approach, the unit repository is investigated for the reduction 
process and a clustering process is performed, based on 
prosodic and phonetic properties. By doing so, the search 
space of the unit selection algorithm is reduced as each target 
unit is searched within the corresponding cluster. On the other 
hand, the bottom-up approach is purely a data driven 
technique since it focuses on the statistical behaviour of the 
unit selection algorithm. The output of the unit selection stage 
is statistically analysed in order to reduce the unit repository. 
The statistical data is collected from the synthesis of a large 
text corpus, where the selection frequency of each unit is 
usually calculated and is used in the reduction process. For 
example, in [15] the removal of the less frequent units is 
proposed. A possible weakness of using only the selection 
frequency is that it does not help avoid redundancy. For 
example two very similar units that are alternatively selected 
equally often by the algorithm, will both be included in the 
reduced database. 

The method proposed in this work falls into the bottom-up 
category, and overcomes the aforementioned problem, by 
employing a technique motivated by the clustering idea of the 
top-down approach. The truncation process is based on the 
selection frequency as well as the actual score of each unit 
during the unit selection process. More specifically, the 
difference of the scores between two instances of the same 
diphone is used as a similarity metric between them.  

The main idea of the proposed method is to preserve the 
units that are most frequently used by the unit selection 
algorithm, and at the same time, avoid keeping similar units. 
The unit selection algorithm is run upon a sufficiently large 
text corpus, and statistical data is collected for the truncation 
process. Based on the unit selection algorithm described in 
section II, we define a score function for each unit in a 
synthesized utterance as the combined local target and join 
cost, 
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where, n
ju denotes the j-th instance of the n-th diphone and 

nt is the target diphone. The second term of the score function 
is a look-behind cost function and it expresses the best join 
cost of the unit n

ju  from all the instances of the previous 
diphone 1nu −  in the utterance under consideration. This is used 
because a forward Viterbi search is used to find the best path. 
Alternatively a look-ahead cost function or both could be 
used, with the main principle of the method remaining the 
same. As far as the algorithmic point of view is concerned, if 
two instances of the same diphone score the same (or similar) 
in a given utterance, they are seen as similar ones, regardless 
of their objective similarity. This also derives from (4) since 
Ct and Cc are summed to find the best path. Thus, we can use 
the difference of scores, averaged over the whole corpus, as a 
similarity metric between instances of the same diphone. For 
all the utterances processed by the algorithm the following 
statistical data are collected: i) the selection frequency n

jf  for 

each n
ju , namely the total number of times the unit was 

selected and, ii) the mean score difference 
, | ( ) ( ) |n n n

j k j kD S u S u= −  
for  all pairs of units of the same diphone (with scores 
referring each time to same utterance).  

The reduction method relies on both the aforementioned 
quantities in order to select the appropriate instances of a 
specific diphone.  Let K be the number of instances of a 
diphone in the available (large) database and M < K the 
desired number of instances in the small database, then a 
greedy algorithm is used to select M units as shown in table I:  

 
TABLE I  

ALGORITHM FOR DATA BASE REDUCTION 

1. Initialize 
1 2[ , ... ]n n n

KF f f f=  

2. Select arg max [ ]nm F n=  

3. Update ,[ ] [ ] i
n mF n F n D= ⋅ for  n = 1 … K 

4. If #(selected) < Μ  goto step 2 
 
We define F as the fitness vector of the instance units, 

initialized with the selection frequencies. Next, we iteratively 
select the unit with the best fitness. The most important step of 
the algorithm is step 3, in which we update the fitness vector 
to avoid selecting similar units. This is not done explicitly but, 
motivated by the idea of fitness sharing used in genetic 
algorithms. The fitness vector is updated after each selection. 
The fitness of each unit is multiplied with its mean score 
difference with the last selected instance. By doing so, the 
fitness of the similar units to the selected ones deteriorates, 
while different ones become more fit. As a side-effect, F[m] 
becomes zero, thus already selected units cannot be reselected. 
The target value M for the number of units in the reduced 
database is determined by the desired reduction rate. The 
coverage meeting criterion (e.g. as proposed in [15]) cannot 
be used since frequent units may be discarded by the method 
as well as a specific coverage does not guarantee the reduction 



 

rate in all diphones. An explicit function is utilized to 
determine the number of units:  
M = min(Mmax, max(Mmin, logb(K))) (7) 
where, the parameters Mmax and Mmin (Mmax > Mmin) explicitly 
define the maximum and minimum number of instance units 
per diphone, while parameter b determines a logarithmic 
reduction rate distribution among diphones. Evaluation results 
on this technique are presented in section IV. 

B. Speech Database Compression and Coding 
Speech database compression is considered as a vital 

problem in embedded unit selection speech synthesis since it 
facilitates for better and efficient adaptation of the technology 
in this domain [11]. The problem is not different than 
conventional speech coding although there are issues that are 
specific to TTS technology. The compression technique 
should not only ensure compression efficiency but also avoid 
introducing perceived signal degradations. Furthermore, it 
should provide random access capability and fast decoding. 
On the other hand, encoding complexity is not an issue since it 
is performed offline.  

In this work, we have adopted Code Excited Linear 
Prediction (CELP) as the speech database compression 
technique in view of the fact that it is a well established and 
widely deployed coding scheme, capable of producing 
adequate speech quality [20]. The adaptation of CELP for the 
purpose of embedded unit selection TTS is depicted in Fig. 3. 
To cope with random access capability, every speech unit 
(diphone) is separately compressed and encoded. Hence, the 
speech database consists of CELP parameters representing 
diphones that are binary encoded for effective database 
organization. It is important to note that in this approach, 
neither the time limits nor the pitch marks of the diphones are 
affected. Also, no perceived spectral degradation occurs. 
Furthermore, a scalable bit allocation scheme is used for 
obtaining different compression ratios. In practice, informal 
listening tests have shown that compression ratios between 7 
and 10 could be used.  

At the synthesis stage, only the selected (best path) 
diphones are decompressed for TD-PSOLA, thus eliminating 
any overhead. The CELP decoder is implemented using fixed 
point arithmetic for performance optimization.      

C. Reduction of the Computational Requirements of the 
Unit Selection module  
One of the most demanding tasks during synthesis runtime 

is that of the unit selection. The unit selection process 
involves dynamically searching and deciding on the “optimal” 
unit sequence over a lattice of available units. The 
performance of the unit selection algorithm is vital since it 
heavily determines the response time of the system. Today’s 
speech databases with sizes ranging from a few MB to several 
GB, and incorporating hundreds of instances per speech unit, 
pose increased demands on CPU power. In large scale 
systems, such as in desktop- or server-based TTS, this is 
compensated, without loss in quality, by the available 
processing and storage power complemented by both 
heuristics (e.g. pruning) and clustering over similar units 
techniques [21][22]. However, in the case of embedded TtS, 
these techniques are not appropriate, since they rely on the 
plurality of remaining units. The latter assumption is not 
applicable for embedded unit selection where the databases 
used are already reduced and, therefore, the search space has 
already been sufficiently limited. 

In this work, a vector quantization (clustering) approach is 
adopted in order to achieve lower computational and storage 
costs, for the purpose of spectral join cost calculation, since it 
is the most expensive task in the unit selection process. The 
approach is based on a within-type clustering of the spectral 
join feature vectors of the speech units (e.g. the clustering of 
the feature vectors of the same phoneme) and the offline 
computation of distances between the centers of each cluster. 
The approach is motivated by the idea presented in [22], 
although it differs significantly since it maintains the available 
search space. A similar approach has been mentioned in [23], 
but deals only with the case of a large scale TTS system and 
does not put focus on the particular characteristics for the 
deployment in embedded devices. 

  
An example of the unit selection algorithm is illustrated in 

Fig. 4, where the synthesis of the utterance “ela” is depicted 
which is the Greek word for “come”. We consider the use of 
diphones so the speech units are {/_e/,/el/,/la/,/a_/} each 
having a total of N, M, K and J number of instances in the 
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Fig. 4.  The unit selection process. The best sequence path is based 
on the cumulative total score. An example of the best path is 
depicted with the solid grey line. 
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speech database respectively. Therefore, the corresponding 
lattice involves the computation of N⋅M+M⋅K+K⋅J 
concatenation cost, termed as Cc. It is important to notice that, 
among these metrics, the spectral join cost is one of the most 
predominant factors for high computational load and slow 
response time at synthesis runtime since unit selection is 
performed per utterance. It employs the retrieval of spectral 
feature vectors for each unit and the calculation of a distance 
which serves as the spectral join cost.  

Specifically, if we let P = {d} be the phoneme set having   
|P| = N elements and D = {pq: p, q ∈ P and pq is valid} be the 
diphone set having |D| = M elements then the following 
statement is true, N2 ≥  |D| = M ∼  O(N2). Furthermore, we 
consider the unit selection speech database as a repository of 
instances of speech units (diphones) that forms the set              
R = { pq

ku : the kth instance of pq ∈ D}. If we let K be the mean 
number of instances per speech diphone then, a specific 
phoneme may form N diphones as the left phoneme of a 
diphone and N diphones as the right phoneme of a diphone, 
each of them having K instances respectively. For example, 
the phoneme /a/ forms the diphone sets /aX/ and /Xa/ where X 
∈ P (e.g. can be any of N phonemes). Since diphones for the 
type /Xa/ concatenate only with diphones of /aX/ and since 
there are K instances for each of them, the possible joins for a 
phoneme (in the diphone set) is in the order of N2K2. Thus, 
since the phoneme set has N elements, the order of (total) 
possible joins in R is O(N3K2). Moreover, for each u∈R we 
need two pairs of (concatenation) feature vectors, that is, one 
for the left phoneme (left join vL(u)) and one for the right 
phoneme (right join vR(u)) and a distance measure,         
d(vR( aq

iu ), vL( qb
ju )) or for simplicity d(vR( iu ), vL( ju )), 

between two units to be used as the join cost. Therefore, the 
options for storage and computation are, either to store the 
feature vectors vL(u), vR(u) for every u∈R and evaluate the 
distance d at runtime, or compute every distance offline and 
store them (in tabular format) for every possible join in R. The 
former entails a high runtime computational cost while the 
latter a high storage cost. 

In order to reduce the runtime computational and storage 
cost, a within-type clustering of spectral join feature vectors of 
speech units is proposed, as well as the offline computation 
and storage of distances between the centres of each cluster. 
More specifically, an offline clustering of all spectral feature 
vectors of the same phoneme is performed, followed by the 
computation of the distances between the centres (or 
representatives) of each cluster. Thus, the cluster distances are 
pre-computed and are used instead of the true distances for 
joining segments. This technique offers a low runtime 
computational and storage cost since it reduces the required 
number of concatenation costs calculations. However, this is 
achieved at the expense of possible degradation of the 
resolution of the spectral join cost which might affect the 
synthetic speech quality. Experimental evaluation shows that 
no significant degradation in quality is observed. The 

algorithmic description of the technique is illustrated in table 
II. 

As a result, if C is the cluster size per phoneme and the 
concatenation occurs per diphone, the number of total possible 
cluster joins is in the order of O(NC2) which is                  
O(NC2)  << O(N3K2) since C can be chosen to be adequately 
small. Additionally, it is important to notice that the number of 
possible joins per diphone is C2 for the case of clustering and 
N⋅K2 without clustering. Hence, the statement C2 < N⋅K2 is 
true even for the case of embedded devices as long as the 
number of instances per diphone is sufficient and again if C is 
adequately small. For example, the developed Text-to-Speech 
system for mobile phones utilizes a phoneme set for the Greek 
language that has N = 34 elements and the number of 
instances per diphone is at least 10. Hence, if the cluster size 
is C = 32 the above criterion is met. 

 
TABLE II 

ALGORITHM FOR CLUSTERING SPECTRAL JOIN COSTS (OFFLINE) 
1. ∀p∈ P do steps 2 to 5 
2. Find all instances of speech units that have p as left or 

right phoneme i.e., find p
leftR  = { lru : u ∈ R and p=l} 

and p
rightR  = { lru : u ∈ R and p=r} 

3. Perform clustering of {vL(u): u∈ p
leftR }∪{ vR(u): 

u∈ p
rightR } in C clusters with centres ci, i = 1…C 

4. Compute Mp(i, j) = d(ci, cj), i, j = 1…C  
5. Store Mp(i, j) and the two cluster indexes per unit 

instance 
  

At synthesis runtime the distance between pairs of diphones 
is retrieved and calculated as M (a, b) instead of d(vR( yp

iu ), 

vL( px
ju )) where, α,b are the corresponding cluster indexes that 

each phoneme of every diphone belongs to. The method does 
not reduce the available search space since it is clear that no 
clustering on the speech units themselves can be performed 
since the speech database is already reduced. Instead, the 
search space is kept the same while clustering is carried out 
for the features that constitute the spectral join cost. While this 
may lead to resolution degradation, it is assumed that since 
within-cluster costs have small differences between them  
together with implicit compensation due to other sub-costs, 
the reduction of the cost resolution can be tolerated.  

IV. EVALUATION AND RESULTS 
The techniques addressed in this work are assessed using 

both objective and subjective criteria. For subjective 
evaluation, the most common approach in assessing the 
quality of TTS systems is through listening tests where a 
group of people is asked to express their opinion regarding the 
TTS quality namely, naturalness and intelligibility. The 
results, usually expressed in terms of mean opinion scores 
(MOS), reflect rather accurately the perceived quality of a 



 

TTS system [1], [5]. 
The experiments were carried out on a database of a Greek 

female speaker, which consists of a total of 1291 annotated 
utterances from a phonetically balanced corpus of modern 
Greek language. The resulting complete database has a total of 
1098 unique diphones and contains about 115K instances. The 
final (embedded) database has approximately 11K diphones. 
The total resources are approximately 6MB and the memory 
footprint of the TTS is less than 2MB. There are no separate 
evaluation results for CELP encoding and decoding since this 
process is implicit in the following evaluation experiments. 
Furthermore, the mobile phone utilized in the experimental 
evaluation had a CPU of 220MHz. 

A. Speech Database Reduction Evaluation 
After benchmarking with various target embedded devices, 

we reached to the conclusion that reasonably high reduction 
rates, up to 95%, are both possible and necessary for the TTS 
system to run efficiently. At such high reduction rates, a 
degradation of output speech quality is almost inevitable, 
especially as far as variability in the speech is concerned. A 
large text corpus of no specific domain was collected for 
testing purposes. Hence, a total of about 12.5K sentences 
covering about 1.5M diphone instances were utilized. A 95% 
segment of the corpus was used to collect statistical data from 
the unit selection synthesis algorithm, and the rest was used 
for the objective evaluation process. The most obvious 

method for comparison is the “select most frequent units” 
method [15]. In order to have meaningful results we use the 
same number of units per diphone M across methods. 
Hereafter we refer to our method as PF and to the most 
frequent selection as PS. As shown in [16], both methods fully 
overlap for extreme reduction cases. For the evaluation of the 
database reduction technique, objective metrics derived from 
statistical parameters describing the behavior of the unit 
selection algorithm, are utilized. The commonly used statistics 
are, the mean values of target, join and total costs over the 
best path units. In addition, another set of objective metrics, 
also derived from the statistics of the unit selection algorithm, 
are introduced. In particular, the maximum target, join and 
total cost is considered. By taking into account the maximum 
cost per utterance, we try to identify glitches in the synthetic 
speech, since places of high cost are potential prosodic, 
spectral or other types of discontinuities. Such cases are 
usually avoided with the use of a large database, but this may 
be inevitable at high reduction rates. All the above statistical 
metrics are calculated per utterance and averaged over the 
whole test corpus.  The comparison results of the objective 
evaluation of PF and PS are illustrated in Fig. 5. As a reference 
point, the corresponding measures for the complete database 
system are {total, join, target}mean = {0.15, 0.07, 0.07} and 
{total, join, target}max = {0.50, 0.27, 0.34}. Although PS 
performs slightly better in terms of mean costs, PF has a far 
lower average maximum cost per utterance, which becomes 
more pronounced as the reduction rate increases. This 
behavior indicates two main presumptions. The PS method 
produces databases that result in synthetic utterances with 
good scores if averaged, but also having units with poor 
scores. On the other hand, PF produced databases resulting in 
utterances with far better target cost at the cost of a slightly 
higher join cost. 

 
TABLE III 

MOS RESULTS OF THE DATABASE REDUCTION METHOD 

 MOS Mean Costs Max Costs 

PF 4.01 0.32, 0.14, 0.18 0.61, 0.34, 0.40 
PS 3.92 0.27, 0.11, 0.16 0.84, 0.30, 0.71 

 
In order to subjectively assess the method, listening tests 

with 35 short sentences (2 to 16 words long) selected from the 
test corpus were conducted. The sentences were synthesized 
with databases produced by PF and PS with a reduction rate of 
93%. A group of 15 listeners, speech experts and listeners 
with no experience in synthetic speech were asked to evaluate 
each pair of sentences, presented in a shuffled order each time. 
The results are summarized in table III, where the mean 
opinion score (MOS) is shown together with the objective 
metrics (total, join, target costs). The results show that PF 
produces better synthetic speech than PS. Also, there is an 
agreement of the MOS values and the averaged maximum 
total cost per utterance. This seems to verify the initial 
hypothesis that PS could result in redundant units in terms of 

 
Fig. 5.  Comparative objective evaluation between PF and PS. Top: 
the averaged mean (solid) and max (dashed) total cost per 
utterance for PF and for PS with dash-dotted and dotted lines 
respectively. Middle, bottom: the metrics for the join and target 
cost respectively are depicted with same notation. 



 

target features, by selecting more similar units and leaving at 
the same time no room for other units to cover other less 
frequent but equally important cases met in general purpose 
TTS systems.  

B. Clustered Spectral Join Cost Evaluation 
The acoustic representation that is used is Mel-Frequency 

Cepstral Coefficients (MFCC) and the Euclidean distance 
between MFCC vectors is used as a spectral join cost. Thus, 
the feature vectors to be clustered are the MFCC vectors for 
every phoneme of every diphone. For all the experiments in 
this work, the number of clusters per phoneme is set to C = 32 
and clustering was performed using the k-means algorithm 
utilizing the Euclidean distance measure as a classification 
metric among the feature vectors. 

In order to evaluate the performance of the proposed 
technique a comparison between two versions of the unit 
selection algorithm namely, with (CUS – clustered join cost 
unit selection) and without (FUS – full unit selection) 
clustering, has been implemented for spectral join cost 
calculation. A total of 52 sentences were synthesized using 
both versions and the averaged times concerning the 
benchmarks of the processing time of the unit selection 
module were measured. The results are summarized in table 
IV. Obviously, a significant reduction in the computational 
load is observed since the proposed technique results in the 
reduction of the computational time, for the unit selection 
module on average by a factor of more than three and 
improves the overall performance of the TTS system on 
average by a factor of 29% compared to the FUS version. 
Additionally, the CUS version accounts only for the 13.1% of 
the total processing time. Moreover, a 2.4 real time factor is 
achieved, on the specific mobile phone. Consequently, the 
response time of the TTS, which heavily depends on the unit 
selection module, is greatly reduced achieving a mean value 
of approximately 0.25sec. 

 
TABLE IV 

BENCHMARKS ON THE PROCESSING TIME OF CUS 
Unit selection speed improvement > 3.5 times 
     Total speed improvement   > 29% 
     Mean response time 0.25sec 
     Real time factor > 2.4 

FUS: 32.5%       
Percentage of total TTS time CUS: 13.1% 

  
To assess the effect of the proposed approach in the 

overall speech quality, we conducted a small scale acoustical 
experiment. A total of 52 short sentences, having 4 to 16 
words, were synthesized (on a mobile phone) using both FUS 
and CUS. The sentences were no-domain specific and were not 
included in the speech database. A group of 15 listeners, 
comprised by both speech and non-speech experts, were asked 
to express their opinion for each sentence in terms of overall 
quality. Each sentence was presented in pairs (FUS and CUS 
version) and the subjects could listen to each sentence more 
than once. The order of each pair was random. The results are 
summarized in table V. The results depicts that the proposed 

technique performs slightly better, as far as overall quality is 
concerned, than its full version counterpart. However, the 
standard deviation shows that both versions can be considered 
equivalent. The main conclusion is that CUS results in a 
synthetic speech quality that is practically indistinguishable 
compared to the FUS version. On the other hand, the gain in 
computational time is significant. Additionally, the cost 
resolution degradation is well balanced since the clustering 
approach does not reduce the original search space, therefore 
any possible degradation is compensated by the target cost 
measures or other sub-costs involved in the concatenation cost 
calculation. This is in accordance with the experimental 
findings. Moreover, it is important to notice that the number 
of clusters causes a trade-off between processing time, storage 
and degradation in cost resolution. Indeed, as the number of 
clusters per phoneme increases the storage also increases. On 
the other hand, a small number of clusters cause a large 
number of phonemes to be represented by a single feature 
vector in the join cost calculation which does not account for 
properly scoring of acoustical dissimilarities and would lead 
to quality degradation. 

TABLE V 
SUBJECTIVE EVALUATION OF THE CUS TECHNIQUE  

 MOS Standard Deviation 

     FUS 3.98 0.45 
     CUS 4.01 0.39 

 

C. Overall Results 
Table VI summarizes computational benchmarks regarding 

the embedded unit selection TTS system. 
 

TABLE VI 
BENCHMARKS OF THE TTS SYSTEM 

Module Computation Percentage at 
synthesis runtime 

NLP 3% 
CELP decoding 69% 
Unit Selection 13% 
TD-PSOLA 15% 

General characteristics 
Database size (scalable) 4-8MB  

Real Time ≥ 2,5   
Response Time 0.25sec 

*Response time depends mostly on the unit selection module, followed by CELP decoding and 
TD-PSOLA. 

 
 
 The results are depicting that the TTS system is capable of 
real time operation with low response time and is sufficiently 
scaled for embedded environments.        

V. CONCLUSIONS 
In this paper, we have described the system architecture of 

a general purpose embedded unit selection TTS system and 
we have presented efficient techniques that successfully 
address the challenging problems arising in embedded 
environments, such as database reduction, database 
compression, and runtime load minimization. In particular, we 
have presented an algorithm which leads to small footprint 



 

speech databases with increased diversity and reduced 
redundancy. Sufficient compression ratios were achieved by 
appropriately adapting CELP to the synthesis process. Finally, 
a vector quantization approach was derived for the spectral 
join cost calculation that significantly reduces the 
computational requirements of the unit selection module. 
Evaluation results provide clear evidence of substantial 
improvement in the computational resources exploitation 
while preserving the overall speech quality in terms of 
naturalness and intelligibility. All the concepts and approaches 
proposed in this paper have been employed in the 
development of a top-quality embedded unit selection TTS 
system for the Greek language. The system has been 
successfully adopted as part of a screen-reader solution for 
mobile phones. 
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