

Embedded Unit Selection Text-to-Speech Synthesis
for Mobile Devices

Sotiris Karabetsos, Member, IEEE, Pirros Tsiakoulis, Member, IEEE, Aimilios Chalamandaris, and Spyros Raptis

Abstract — Nowadays, unit selection based text-to-speech

technology is the mainstream approach for near natural
speech synthesis systems. However, this is achieved at the
expense of raised requirements in terms of computational
resources. This work describes design and implementation
approaches for the efficient integration of this technology in
computational environments with limited resources, such as
mobile devices, with no considerable speech quality
degradation. In particular, the issues of database reduction,
acoustic inventory compression and runtime computational
load minimization are mainly addressed in this paper. Both
objective and subjective assessments confirm the effectiveness
of these approaches in terms of constructing a general
purpose embedded unit selection TTS system and reducing the
computational requirements while maintaining high speech
quality1.

Index Terms — Embedded Speech Synthesis, Unit Selection,
Text-to-Speech, Mobile Devices, Mobile Phones.

I. INTRODUCTION
Text-to-Speech (TTS) technology deals with the production

of synthetic voice output using textual information, thus
serving as a more natural interface in human machine
interaction. In order for TTS technology to be widely adopted,
near-natural voice output quality has to be achieved. Over the
last years, significant research progress in the field has
contributed towards this goal. Nowadays, unit selection
concatenative speech synthesis technology has become the
dominant approach for building naturally sounding text-to-
speech systems. This technique relies on runtime selection and
compilation of speech units from a large speech database [1].
The speech database usually consists of a sufficient corpus of
appropriately selected naturally spoken utterances, carefully
annotated to the unit level. In most cases the speech units are
phonemes or diphones. Each utterance comes from a text
corpus designed to cover as many units as possible in different
phonetic and prosodic contexts. The resulting repository of
speech units may have little or great redundancy, on which
speech variability and overall quality is significantly depended
[1]. The drastic improvement in quality of synthetic speech,
namely naturalness and intelligibility, over the years has led to

1 This work was supported in part by E.U. and National funding.

S. Karabetsos, P. Tsiakoulis, A. Chalamandaris and S. Raptis are affiliated
with the Institute for Language and Speech Processing (ILSP) / R.C. Athena,
Department of Voice & Sound Technology, Artemidos 6 & Epidavrou,
Marousi, GR 15125, Athens, Greece (e-mail: {sotoskar, ptsiak, achalam,
spy}@ilsp.gr).

the adoption of TTS as a mainstream technology. As a result,
TTS technology is now employed in a wide range of
applications, spanning from assistive technology and
education, to telecommunications and entertainment [2]-[5].
However, this usually comes at the cost of large resource
repositories and increased processing power, limiting the
applications in desktop or server-based environments and
therefore prohibiting its use on embedded or portable devices.
Yet, the ever increasing demand for enhanced consumer
applications and the extensive use of portable devices such as
mobile phones or personal digital assistants (PDA) in
everyday’s life, have intensified the need to efficiently adapt
TTS technology in environments with limited computational
resources. For example, application areas such as assistive
aids and tools, speech-to-speech translation, robotics, mobile
phones, household devices, navigation and personal guidance
gadgets, can largely benefit from the more natural and
intuitive means of human computer interaction (HCI) offered
by speech [6]-[10].

In order to address the challenge of developing a high
quality TTS system for embedded devices, several approaches
have been considered, regarding not only the adaptation of
unit selection TTS but also the underlying technology itself. In
reference to the technology, there are several different
approaches for building low footprint TTS systems. Solutions
include diphone-based TTS where the speech stimuli are
comprised of only one instance of every diphone, and
parametric TTS, such as Formant-based or HMM-based [1],
[11]-[13]. Even though both diphone-based and formant-based
TTS systems are well suited for low resource TTS, they suffer
from degraded speech quality which is often not acceptable
for mainstream consumer products [11]. On the other hand,
recent results have shown that statistical parametric speech
synthesis based on Hidden Markov Models (HMM-based
TTS) can deliver high quality synthetic speech with reduced
demands for computational resources, and hence can
efficiently be adopted for portable devices [12].

Nevertheless, unit selection TTS is still the dominant
approach for high quality speech synthesis, and therefore its
efficient adaption to environments with reduced
computational resources is of great interest so long as the
speech quality is preserved. Recent research in this field has
been mainly concentrated on optimizing several aspects of the
speech synthesis procedure. These aspects include speech
database reduction and compression for unlimited domain
speech synthesis, speech signal parameterization and runtime
synthesis optimization [11]-[16]. Approaches for limited

domain speech synthesis (that is, domain-specific speech
databases e.g., weather forecast) have also been proposed
[17]. In summary, the most important issues of embedded unit
selection TTS, relate to the objective of efficiently balancing
the requirements regarding the computational load and the
available resources together with delivering high quality
speech.

In this paper, we describe design and implementation
approaches for integrating generic domain unit selection TTS
technology in environments with limited resources and
computational capabilities such as mobile phones. More
particularly, emphasis is given in three main issues. Firstly,
we detail on the development of a specific methodology for
the construction of a speech database for embedded devices,
based on the existing databases utilized in the server-based or
desktop-based versions of the corresponding TTS systems.
The method relies on statistical analysis on the data derived
from the unit selection stage on a large text corpus and
employs, not only the selection frequencies, but also the unit
selection scores of the units, leading to enhanced coverage and
reduced redundancy. Secondly, we focus on the compression
and coding of the speech units, aiming to efficient storage and
retrieval, as well as to final signal quality during synthesis
runtime. For this purpose, a code excited linear prediction
(CELP) based approach is utilized and adapted to the
particular needs of the TTS system. Finally, the last aspect we
cover is the minimization of the computational requirements
inherent to the unit selection module. The latter module
performs a computationally demanding search to determine
the optimal sequence among candidate speech units. To
reduce the runtime computational load, we adopted a vector
quantization (VQ) approach for the spectral join feature
vectors of the same speech units and the offline computation
of the corresponding distances. Evaluation results made clear
that the aforementioned processes perform efficiently, leading
successfully to a commercial TTS system for mobile phones
of very high quality.

The rest of this paper is organized as follows. In section II,

the unit selection concatenative speech synthesis technology is
briefly reviewed and a description of the embedded TTS
system architecture is given, highlighting its core modules.
Section III provides details on the proposed design and
implementation for database reduction and compression, as
well as the minimization of the computational requirements
related to the unit selection module. In section IV, both
subjective and objective evaluation results are presented
regarding the assessment of the followed techniques. Finally,
a summary and some conclusive remarks are given in section
V.

II. EMBEDDED TEXT TO SPEECH SYSTEM ARCHITECTURE
The general architectural diagram of a corpus-based TTS

system is depicted in Fig. 1. There are two main components
that comprise such a system, namely the Natural Language
Processing (NLP) and the Digital Signal Processing (DSP).
This diagram is valid for every data driven (that is, corpus-
based) TTS system, regardless of the underlying technology
(e.g., unit selection or parametric). The NLP component
accounts for every aspect of the linguistic processing of the
input text, whereas the DSP component accounts for speech
signal manipulation and generation. For a unit selection TTS,
besides the speech units (usually diphones) the speech
database contains all the necessary data for the unit selection
stage of the synthesis [1], [5].

In particular, the NLP component is mainly responsible for
parsing, analyzing and transforming the input text into an
intermediate symbolic format, appropriate to feed the DSP
component. Furthermore, it provides all the essential
information regarding prosody, that is, pitch contour,
durations and intensity. It is usually composed of a text parser,
a morpho-syntactic analyzer, a text normalizer, a letter-to-
sound module and a prosody generator. All these sub-
components are necessary for the disambiguation and proper
expansion of all abbreviations and acronyms, for the correct
word pronunciation, and also for the detection and application
of the rich set of distinctive features of the speech signal,
closely related to prosody.

The DSP component comprises of all the essential modules
for the proper manipulation of the speech signal, that is,
prosodic analysis and modification, speech signal
representation and generation. Among various algorithms for
speech manipulation, Time Domain Pitch Synchronous
Overlap Add (TD-PSOLA), Harmonic plus Noise (HNM),
Linear Prediction based (LPC-based) and Multiband
Resynthesis Overlap Add (MBROLA) are the ones that are
mostly employed [1]. The DSP component also includes the
unit selection module, which performs the selection of the
speech units from the speech database using explicit matching
criteria. More details about this module are given later in this
section.

It becomes apparent that a full scale deployment of a unit
selection TTS system is either infeasible or impractical in
embedded environments. The system architecture that we

Natural Language Processing (NLP)
• Parsing and Morpho-syntactic analysis
• Text Normalization
• Letter to Sound
• Prosodic analysis

Digital Signal Processing (DSP)
• Prosodic Analysis
• Speech Representation and Manipulation
• Speech Generation

Speech (units)
Database

Voice

text

Fig. 1. General architectural diagram of a corpus-based TTS
system.

adopted for embedded unit selection speech synthesis is
shown in Fig. 2. The core modules of our system are briefly
described in the remainder of this section, while in section III,
the adaptation techniques are explained.

A. NLP
As shown in Fig. 2, the input text is fed into the parsing

module, where sentence boundaries are identified and
extracted. This step is important since all remaining modules
perform only sentence-level processing. The identified
sentences are then fully expanded by the text normalization
module. Besides numbers, abbreviations and acronyms, care
has to be taken regarding the special characteristics of
embedded environments (e.g., mobile phones). For such cases,
particular care must be taken for the proper manipulation and
expansion of special cases such as abbreviated menu options,
stress disambiguation and alternative ways of text writing
(e.g., multilingual, misspelled or transliterated such as in the
case of greeklish [18]). To deal with these issues, the text
normalization module relies on a rule-based approach
combined with lexicon resources. A detailed presentation of
these issues is beyond the scope of this paper and can be
found at the given references [18], [19]. The letter-to-sound
module transforms the expanded text in an intermediate
symbolic form related to phonetic description. Most often, the
module relies on a rule-based approach with limited
computational requirements [19], complemented when
necessary by exception dictionaries. The same approach is
followed regarding prosody analysis, where pitch patterns are
extracted by a large corpus analysis.

B. DSP
The DSP component comprises of the unit selection module

and the signal manipulation module, in our case one based on
TD-PSOLA. The speech database of the embedded TTS
system uses a sampling frequency of 16 KHz. The database
includes diphones as principal speech units, derived from the
recordings of a Greek female professional speaker.

The unit selection module is considered to be one of the

most important components in a corpus-based unit selection
concatenative speech synthesis system. It provides a
mechanism to automatically select the optimal sequence of
database units that produce the final speech output, the quality
of which depends on its efficiency. The criterion for
optimizing is the minimization of a total cost function which is
defined by two partial cost functions, namely the target cost
and the concatenation cost function [1], [5].

The target cost function measures the similarity of an
applicant unit with its predicted specifications (from NLP) and
is defined as,

∑
=

⋅=
p

j
ii

t
j

t
jii

t utCwutC
1

),(),((1)

where, u1
n = {u1, u2, …, un} are the candidate (sequence) units,

t1
n = {t1, t2, …, tn} are the target (sequence) units,),(ii

t
j utC is a

partial target cost, p is the dimension of the target feature
vector and t

jw is a weighting factor for every partial target
cost. The target feature vector typically employs target values
for prosody and contextual features. The concatenation (or
join) cost function accounts for the acoustic matching between
pairs of consecutive candidate units and is defined as,

∑
=

−− ⋅=
q

j
ii

c
j

c
jii

c uuCwuuC
1

11),(),((2)

 where,),(1 ii
c
j uuC −

 is a partial join cost , q is the dimension of

the join feature vector and c
jw is a weighting factor for every

partial join cost. The feature vector typically consists of
spectral similarity measures, pitch similarity measures, context
similarity etc. Hence, the total cost is defined as,

1 1 1
1 2

(,) (,) (,)
n n

n n t t c c
i i i i

i i

C t u W C t u W C u u−
= =

= ⋅ + ⋅∑ ∑ (3)

or based on (1) and (2) it can be written as,

1 1 1
1 1 2 1

(,) (,) (,)
p qn n

n n t t t c c c
j j i i j j i i

i j i j

C t u W w C t u W w C u u−
= = = =

= ⋅ ⋅ + ⋅ ⋅∑ ∑ ∑ ∑ (4)

 where, tW and cW are the weights that denote the significance
of the target cost and the join cost, respectively. The goal of
the unit selection module is to perform a (computationally
demanding) search so as to find the speech unit sequence
which minimizes the total cost, hence to specify,

1
1 1 1...

min (,)
n

n n n

u u
u C t u=
� (5)

The selection of the optimal speech unit sequence incorporates
a thorough search (usually a Viterbi search) which involves
comparisons and calculations of similarity measures between
all available units, often employing heuristics to guide and/or
limit the search [1], [5].

III. ADAPTATION TECHNIQUES FOR EMBEDDED DEVICES
For the efficient adaptation and integration of unit selection

TTS technology in embedded environments, a balance must
be stroke between the conflicting demands of minimizing the
computational load while preserving a high-quality speech
output. In most of the cases, computational load increases in

Parsing &
Structural

analysis Module

Lexicon
& Rules

Text
Normalization

Module

Letter to Sound
Module

Prosody
Module

Lexicon
& Rules

Prosody
model or
patterns

Natural Language Processing

text

Unit Selection

Module

Adapted Speech
Database & other
functional parameters

Digital Signal Processing

TD-PSOLA Module

voice

Fig. 2. System architecture for the embedded unit selection TTS
system.

proportion to the speech database size. As already mentioned,
desktop- or server-based TTS systems involve large speech
databases. To avoid building a speech database from scratch,
effective scaling-down can be achieved by employing speech
database reduction techniques. Furthermore, the resulting
speech database should be compressed and encoded in a way
suitable for synthesis runtime. Moreover, the computational
requirements of the unit selection module need to be reduced.
In the following sections, techniques to cope with these
problems are described.

A. Speech Database Reduction
The method relies on statistical data produced by the full

scale unit selection process on a large text corpus, initially
proposed in [16]. It utilizes the selection frequency, as well as
the actual score of each speech unit (diphone). As outlined in
[15] the strategies usually fall in two categories: the top-down
and the bottom-up approaches. According to the top-down
approach, the unit repository is investigated for the reduction
process and a clustering process is performed, based on
prosodic and phonetic properties. By doing so, the search
space of the unit selection algorithm is reduced as each target
unit is searched within the corresponding cluster. On the other
hand, the bottom-up approach is purely a data driven
technique since it focuses on the statistical behaviour of the
unit selection algorithm. The output of the unit selection stage
is statistically analysed in order to reduce the unit repository.
The statistical data is collected from the synthesis of a large
text corpus, where the selection frequency of each unit is
usually calculated and is used in the reduction process. For
example, in [15] the removal of the less frequent units is
proposed. A possible weakness of using only the selection
frequency is that it does not help avoid redundancy. For
example two very similar units that are alternatively selected
equally often by the algorithm, will both be included in the
reduced database.

The method proposed in this work falls into the bottom-up
category, and overcomes the aforementioned problem, by
employing a technique motivated by the clustering idea of the
top-down approach. The truncation process is based on the
selection frequency as well as the actual score of each unit
during the unit selection process. More specifically, the
difference of the scores between two instances of the same
diphone is used as a similarity metric between them.

The main idea of the proposed method is to preserve the
units that are most frequently used by the unit selection
algorithm, and at the same time, avoid keeping similar units.
The unit selection algorithm is run upon a sufficiently large
text corpus, and statistical data is collected for the truncation
process. Based on the unit selection algorithm described in
section II, we define a score function for each unit in a
synthesized utterance as the combined local target and join
cost,

1() (,) min((,))n t n c n n
j n j j kk

S u C t u C u u −= + (6)

where, n
ju denotes the j-th instance of the n-th diphone and

nt is the target diphone. The second term of the score function
is a look-behind cost function and it expresses the best join
cost of the unit n

ju from all the instances of the previous
diphone 1nu − in the utterance under consideration. This is used
because a forward Viterbi search is used to find the best path.
Alternatively a look-ahead cost function or both could be
used, with the main principle of the method remaining the
same. As far as the algorithmic point of view is concerned, if
two instances of the same diphone score the same (or similar)
in a given utterance, they are seen as similar ones, regardless
of their objective similarity. This also derives from (4) since
Ct and Cc are summed to find the best path. Thus, we can use
the difference of scores, averaged over the whole corpus, as a
similarity metric between instances of the same diphone. For
all the utterances processed by the algorithm the following
statistical data are collected: i) the selection frequency n

jf for

each n
ju , namely the total number of times the unit was

selected and, ii) the mean score difference
, | () () |n n n

j k j kD S u S u= −
for all pairs of units of the same diphone (with scores
referring each time to same utterance).

The reduction method relies on both the aforementioned
quantities in order to select the appropriate instances of a
specific diphone. Let K be the number of instances of a
diphone in the available (large) database and M < K the
desired number of instances in the small database, then a
greedy algorithm is used to select M units as shown in table I:

TABLE I

ALGORITHM FOR DATA BASE REDUCTION

1. Initialize
1 2[, ...]n n n

KF f f f=

2. Select arg max []nm F n=

3. Update ,[] [] i
n mF n F n D= ⋅ for n = 1 … K

4. If #(selected) < Μ goto step 2

We define F as the fitness vector of the instance units,

initialized with the selection frequencies. Next, we iteratively
select the unit with the best fitness. The most important step of
the algorithm is step 3, in which we update the fitness vector
to avoid selecting similar units. This is not done explicitly but,
motivated by the idea of fitness sharing used in genetic
algorithms. The fitness vector is updated after each selection.
The fitness of each unit is multiplied with its mean score
difference with the last selected instance. By doing so, the
fitness of the similar units to the selected ones deteriorates,
while different ones become more fit. As a side-effect, F[m]
becomes zero, thus already selected units cannot be reselected.
The target value M for the number of units in the reduced
database is determined by the desired reduction rate. The
coverage meeting criterion (e.g. as proposed in [15]) cannot
be used since frequent units may be discarded by the method
as well as a specific coverage does not guarantee the reduction

rate in all diphones. An explicit function is utilized to
determine the number of units:
M = min(Mmax, max(Mmin, logb(K))) (7)
where, the parameters Mmax and Mmin (Mmax > Mmin) explicitly
define the maximum and minimum number of instance units
per diphone, while parameter b determines a logarithmic
reduction rate distribution among diphones. Evaluation results
on this technique are presented in section IV.

B. Speech Database Compression and Coding
Speech database compression is considered as a vital

problem in embedded unit selection speech synthesis since it
facilitates for better and efficient adaptation of the technology
in this domain [11]. The problem is not different than
conventional speech coding although there are issues that are
specific to TTS technology. The compression technique
should not only ensure compression efficiency but also avoid
introducing perceived signal degradations. Furthermore, it
should provide random access capability and fast decoding.
On the other hand, encoding complexity is not an issue since it
is performed offline.

In this work, we have adopted Code Excited Linear
Prediction (CELP) as the speech database compression
technique in view of the fact that it is a well established and
widely deployed coding scheme, capable of producing
adequate speech quality [20]. The adaptation of CELP for the
purpose of embedded unit selection TTS is depicted in Fig. 3.
To cope with random access capability, every speech unit
(diphone) is separately compressed and encoded. Hence, the
speech database consists of CELP parameters representing
diphones that are binary encoded for effective database
organization. It is important to note that in this approach,
neither the time limits nor the pitch marks of the diphones are
affected. Also, no perceived spectral degradation occurs.
Furthermore, a scalable bit allocation scheme is used for
obtaining different compression ratios. In practice, informal
listening tests have shown that compression ratios between 7
and 10 could be used.

At the synthesis stage, only the selected (best path)
diphones are decompressed for TD-PSOLA, thus eliminating
any overhead. The CELP decoder is implemented using fixed
point arithmetic for performance optimization.

C. Reduction of the Computational Requirements of the
Unit Selection module
One of the most demanding tasks during synthesis runtime

is that of the unit selection. The unit selection process
involves dynamically searching and deciding on the “optimal”
unit sequence over a lattice of available units. The
performance of the unit selection algorithm is vital since it
heavily determines the response time of the system. Today’s
speech databases with sizes ranging from a few MB to several
GB, and incorporating hundreds of instances per speech unit,
pose increased demands on CPU power. In large scale
systems, such as in desktop- or server-based TTS, this is
compensated, without loss in quality, by the available
processing and storage power complemented by both
heuristics (e.g. pruning) and clustering over similar units
techniques [21][22]. However, in the case of embedded TtS,
these techniques are not appropriate, since they rely on the
plurality of remaining units. The latter assumption is not
applicable for embedded unit selection where the databases
used are already reduced and, therefore, the search space has
already been sufficiently limited.

In this work, a vector quantization (clustering) approach is
adopted in order to achieve lower computational and storage
costs, for the purpose of spectral join cost calculation, since it
is the most expensive task in the unit selection process. The
approach is based on a within-type clustering of the spectral
join feature vectors of the speech units (e.g. the clustering of
the feature vectors of the same phoneme) and the offline
computation of distances between the centers of each cluster.
The approach is motivated by the idea presented in [22],
although it differs significantly since it maintains the available
search space. A similar approach has been mentioned in [23],
but deals only with the case of a large scale TTS system and
does not put focus on the particular characteristics for the
deployment in embedded devices.

An example of the unit selection algorithm is illustrated in

Fig. 4, where the synthesis of the utterance “ela” is depicted
which is the Greek word for “come”. We consider the use of
diphones so the speech units are {/_e/,/el/,/la/,/a_/} each
having a total of N, M, K and J number of instances in the

.

.

.

.

.

.

/_e/1

/_e/2

/_e/N

/_e/n

/el/1

/el/2

/el/m

/el/M

/la/1

/la/2

/la/k

/la/K

/a_/1

/a_/2

/a_/j

/a_/J

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(/_ / , / /)
1... , 1...

c
n mC e el

n N m M= =

(/ / , / /)
1... , 1...

c
m kC el la

m M k K= =

(/ / , / _/)

1... , 1...

c
k jC la a

k K j J= =

Fig. 4. The unit selection process. The best sequence path is based
on the cumulative total score. An example of the best path is
depicted with the solid grey line.

Compressed
& Encoded
Speech
Database

Speech unit
(diphone) CELP

Encoder

Binary-encoded
CELP-packed
diphones

Database encoding process
p ocess

Database decoding and synthesis process

Unit Selection
Module

TD-PSOLA
Module

CELP
Decoder

Speech

Fig. 3. Speech database compression and encoding by CELP
adaptation.

speech database respectively. Therefore, the corresponding
lattice involves the computation of N⋅M+M⋅K+K⋅J
concatenation cost, termed as Cc. It is important to notice that,
among these metrics, the spectral join cost is one of the most
predominant factors for high computational load and slow
response time at synthesis runtime since unit selection is
performed per utterance. It employs the retrieval of spectral
feature vectors for each unit and the calculation of a distance
which serves as the spectral join cost.

Specifically, if we let P = {d} be the phoneme set having
|P| = N elements and D = {pq: p, q ∈ P and pq is valid} be the
diphone set having |D| = M elements then the following
statement is true, N2 ≥ |D| = M ∼ O(N2). Furthermore, we
consider the unit selection speech database as a repository of
instances of speech units (diphones) that forms the set
R = { pq

ku : the kth instance of pq ∈ D}. If we let K be the mean
number of instances per speech diphone then, a specific
phoneme may form N diphones as the left phoneme of a
diphone and N diphones as the right phoneme of a diphone,
each of them having K instances respectively. For example,
the phoneme /a/ forms the diphone sets /aX/ and /Xa/ where X
∈ P (e.g. can be any of N phonemes). Since diphones for the
type /Xa/ concatenate only with diphones of /aX/ and since
there are K instances for each of them, the possible joins for a
phoneme (in the diphone set) is in the order of N2K2. Thus,
since the phoneme set has N elements, the order of (total)
possible joins in R is O(N3K2). Moreover, for each u∈R we
need two pairs of (concatenation) feature vectors, that is, one
for the left phoneme (left join vL(u)) and one for the right
phoneme (right join vR(u)) and a distance measure,
d(vR(aq

iu), vL(qb
ju)) or for simplicity d(vR(iu), vL(ju)),

between two units to be used as the join cost. Therefore, the
options for storage and computation are, either to store the
feature vectors vL(u), vR(u) for every u∈R and evaluate the
distance d at runtime, or compute every distance offline and
store them (in tabular format) for every possible join in R. The
former entails a high runtime computational cost while the
latter a high storage cost.

In order to reduce the runtime computational and storage
cost, a within-type clustering of spectral join feature vectors of
speech units is proposed, as well as the offline computation
and storage of distances between the centres of each cluster.
More specifically, an offline clustering of all spectral feature
vectors of the same phoneme is performed, followed by the
computation of the distances between the centres (or
representatives) of each cluster. Thus, the cluster distances are
pre-computed and are used instead of the true distances for
joining segments. This technique offers a low runtime
computational and storage cost since it reduces the required
number of concatenation costs calculations. However, this is
achieved at the expense of possible degradation of the
resolution of the spectral join cost which might affect the
synthetic speech quality. Experimental evaluation shows that
no significant degradation in quality is observed. The

algorithmic description of the technique is illustrated in table
II.

As a result, if C is the cluster size per phoneme and the
concatenation occurs per diphone, the number of total possible
cluster joins is in the order of O(NC2) which is
O(NC2) << O(N3K2) since C can be chosen to be adequately
small. Additionally, it is important to notice that the number of
possible joins per diphone is C2 for the case of clustering and
N⋅K2 without clustering. Hence, the statement C2 < N⋅K2 is
true even for the case of embedded devices as long as the
number of instances per diphone is sufficient and again if C is
adequately small. For example, the developed Text-to-Speech
system for mobile phones utilizes a phoneme set for the Greek
language that has N = 34 elements and the number of
instances per diphone is at least 10. Hence, if the cluster size
is C = 32 the above criterion is met.

TABLE II

ALGORITHM FOR CLUSTERING SPECTRAL JOIN COSTS (OFFLINE)
1. ∀p∈ P do steps 2 to 5
2. Find all instances of speech units that have p as left or

right phoneme i.e., find p
leftR = { lru : u ∈ R and p=l}

and p
rightR = { lru : u ∈ R and p=r}

3. Perform clustering of {vL(u): u∈ p
leftR }∪{ vR(u):

u∈ p
rightR } in C clusters with centres ci, i = 1…C

4. Compute Mp(i, j) = d(ci, cj), i, j = 1…C
5. Store Mp(i, j) and the two cluster indexes per unit

instance

At synthesis runtime the distance between pairs of diphones
is retrieved and calculated as M (a, b) instead of d(vR(yp

iu),

vL(px
ju)) where, α,b are the corresponding cluster indexes that

each phoneme of every diphone belongs to. The method does
not reduce the available search space since it is clear that no
clustering on the speech units themselves can be performed
since the speech database is already reduced. Instead, the
search space is kept the same while clustering is carried out
for the features that constitute the spectral join cost. While this
may lead to resolution degradation, it is assumed that since
within-cluster costs have small differences between them
together with implicit compensation due to other sub-costs,
the reduction of the cost resolution can be tolerated.

IV. EVALUATION AND RESULTS
The techniques addressed in this work are assessed using

both objective and subjective criteria. For subjective
evaluation, the most common approach in assessing the
quality of TTS systems is through listening tests where a
group of people is asked to express their opinion regarding the
TTS quality namely, naturalness and intelligibility. The
results, usually expressed in terms of mean opinion scores
(MOS), reflect rather accurately the perceived quality of a

TTS system [1], [5].
The experiments were carried out on a database of a Greek

female speaker, which consists of a total of 1291 annotated
utterances from a phonetically balanced corpus of modern
Greek language. The resulting complete database has a total of
1098 unique diphones and contains about 115K instances. The
final (embedded) database has approximately 11K diphones.
The total resources are approximately 6MB and the memory
footprint of the TTS is less than 2MB. There are no separate
evaluation results for CELP encoding and decoding since this
process is implicit in the following evaluation experiments.
Furthermore, the mobile phone utilized in the experimental
evaluation had a CPU of 220MHz.

A. Speech Database Reduction Evaluation
After benchmarking with various target embedded devices,

we reached to the conclusion that reasonably high reduction
rates, up to 95%, are both possible and necessary for the TTS
system to run efficiently. At such high reduction rates, a
degradation of output speech quality is almost inevitable,
especially as far as variability in the speech is concerned. A
large text corpus of no specific domain was collected for
testing purposes. Hence, a total of about 12.5K sentences
covering about 1.5M diphone instances were utilized. A 95%
segment of the corpus was used to collect statistical data from
the unit selection synthesis algorithm, and the rest was used
for the objective evaluation process. The most obvious

method for comparison is the “select most frequent units”
method [15]. In order to have meaningful results we use the
same number of units per diphone M across methods.
Hereafter we refer to our method as PF and to the most
frequent selection as PS. As shown in [16], both methods fully
overlap for extreme reduction cases. For the evaluation of the
database reduction technique, objective metrics derived from
statistical parameters describing the behavior of the unit
selection algorithm, are utilized. The commonly used statistics
are, the mean values of target, join and total costs over the
best path units. In addition, another set of objective metrics,
also derived from the statistics of the unit selection algorithm,
are introduced. In particular, the maximum target, join and
total cost is considered. By taking into account the maximum
cost per utterance, we try to identify glitches in the synthetic
speech, since places of high cost are potential prosodic,
spectral or other types of discontinuities. Such cases are
usually avoided with the use of a large database, but this may
be inevitable at high reduction rates. All the above statistical
metrics are calculated per utterance and averaged over the
whole test corpus. The comparison results of the objective
evaluation of PF and PS are illustrated in Fig. 5. As a reference
point, the corresponding measures for the complete database
system are {total, join, target}mean = {0.15, 0.07, 0.07} and
{total, join, target}max = {0.50, 0.27, 0.34}. Although PS
performs slightly better in terms of mean costs, PF has a far
lower average maximum cost per utterance, which becomes
more pronounced as the reduction rate increases. This
behavior indicates two main presumptions. The PS method
produces databases that result in synthetic utterances with
good scores if averaged, but also having units with poor
scores. On the other hand, PF produced databases resulting in
utterances with far better target cost at the cost of a slightly
higher join cost.

TABLE III

MOS RESULTS OF THE DATABASE REDUCTION METHOD

 MOS Mean Costs Max Costs

PF 4.01 0.32, 0.14, 0.18 0.61, 0.34, 0.40
PS 3.92 0.27, 0.11, 0.16 0.84, 0.30, 0.71

In order to subjectively assess the method, listening tests

with 35 short sentences (2 to 16 words long) selected from the
test corpus were conducted. The sentences were synthesized
with databases produced by PF and PS with a reduction rate of
93%. A group of 15 listeners, speech experts and listeners
with no experience in synthetic speech were asked to evaluate
each pair of sentences, presented in a shuffled order each time.
The results are summarized in table III, where the mean
opinion score (MOS) is shown together with the objective
metrics (total, join, target costs). The results show that PF
produces better synthetic speech than PS. Also, there is an
agreement of the MOS values and the averaged maximum
total cost per utterance. This seems to verify the initial
hypothesis that PS could result in redundant units in terms of

Fig. 5. Comparative objective evaluation between PF and PS. Top:
the averaged mean (solid) and max (dashed) total cost per
utterance for PF and for PS with dash-dotted and dotted lines
respectively. Middle, bottom: the metrics for the join and target
cost respectively are depicted with same notation.

target features, by selecting more similar units and leaving at
the same time no room for other units to cover other less
frequent but equally important cases met in general purpose
TTS systems.

B. Clustered Spectral Join Cost Evaluation
The acoustic representation that is used is Mel-Frequency

Cepstral Coefficients (MFCC) and the Euclidean distance
between MFCC vectors is used as a spectral join cost. Thus,
the feature vectors to be clustered are the MFCC vectors for
every phoneme of every diphone. For all the experiments in
this work, the number of clusters per phoneme is set to C = 32
and clustering was performed using the k-means algorithm
utilizing the Euclidean distance measure as a classification
metric among the feature vectors.

In order to evaluate the performance of the proposed
technique a comparison between two versions of the unit
selection algorithm namely, with (CUS – clustered join cost
unit selection) and without (FUS – full unit selection)
clustering, has been implemented for spectral join cost
calculation. A total of 52 sentences were synthesized using
both versions and the averaged times concerning the
benchmarks of the processing time of the unit selection
module were measured. The results are summarized in table
IV. Obviously, a significant reduction in the computational
load is observed since the proposed technique results in the
reduction of the computational time, for the unit selection
module on average by a factor of more than three and
improves the overall performance of the TTS system on
average by a factor of 29% compared to the FUS version.
Additionally, the CUS version accounts only for the 13.1% of
the total processing time. Moreover, a 2.4 real time factor is
achieved, on the specific mobile phone. Consequently, the
response time of the TTS, which heavily depends on the unit
selection module, is greatly reduced achieving a mean value
of approximately 0.25sec.

TABLE IV

BENCHMARKS ON THE PROCESSING TIME OF CUS
Unit selection speed improvement > 3.5 times
 Total speed improvement > 29%
 Mean response time 0.25sec
 Real time factor > 2.4

FUS: 32.5%
Percentage of total TTS time CUS: 13.1%

To assess the effect of the proposed approach in the

overall speech quality, we conducted a small scale acoustical
experiment. A total of 52 short sentences, having 4 to 16
words, were synthesized (on a mobile phone) using both FUS
and CUS. The sentences were no-domain specific and were not
included in the speech database. A group of 15 listeners,
comprised by both speech and non-speech experts, were asked
to express their opinion for each sentence in terms of overall
quality. Each sentence was presented in pairs (FUS and CUS
version) and the subjects could listen to each sentence more
than once. The order of each pair was random. The results are
summarized in table V. The results depicts that the proposed

technique performs slightly better, as far as overall quality is
concerned, than its full version counterpart. However, the
standard deviation shows that both versions can be considered
equivalent. The main conclusion is that CUS results in a
synthetic speech quality that is practically indistinguishable
compared to the FUS version. On the other hand, the gain in
computational time is significant. Additionally, the cost
resolution degradation is well balanced since the clustering
approach does not reduce the original search space, therefore
any possible degradation is compensated by the target cost
measures or other sub-costs involved in the concatenation cost
calculation. This is in accordance with the experimental
findings. Moreover, it is important to notice that the number
of clusters causes a trade-off between processing time, storage
and degradation in cost resolution. Indeed, as the number of
clusters per phoneme increases the storage also increases. On
the other hand, a small number of clusters cause a large
number of phonemes to be represented by a single feature
vector in the join cost calculation which does not account for
properly scoring of acoustical dissimilarities and would lead
to quality degradation.

TABLE V
SUBJECTIVE EVALUATION OF THE CUS TECHNIQUE

 MOS Standard Deviation

 FUS 3.98 0.45
 CUS 4.01 0.39

C. Overall Results
Table VI summarizes computational benchmarks regarding

the embedded unit selection TTS system.

TABLE VI
BENCHMARKS OF THE TTS SYSTEM

Module Computation Percentage at
synthesis runtime

NLP 3%
CELP decoding 69%
Unit Selection 13%
TD-PSOLA 15%

General characteristics
Database size (scalable) 4-8MB

Real Time ≥ 2,5
Response Time 0.25sec

*Response time depends mostly on the unit selection module, followed by CELP decoding and
TD-PSOLA.

 The results are depicting that the TTS system is capable of
real time operation with low response time and is sufficiently
scaled for embedded environments.

V. CONCLUSIONS
In this paper, we have described the system architecture of

a general purpose embedded unit selection TTS system and
we have presented efficient techniques that successfully
address the challenging problems arising in embedded
environments, such as database reduction, database
compression, and runtime load minimization. In particular, we
have presented an algorithm which leads to small footprint

speech databases with increased diversity and reduced
redundancy. Sufficient compression ratios were achieved by
appropriately adapting CELP to the synthesis process. Finally,
a vector quantization approach was derived for the spectral
join cost calculation that significantly reduces the
computational requirements of the unit selection module.
Evaluation results provide clear evidence of substantial
improvement in the computational resources exploitation
while preserving the overall speech quality in terms of
naturalness and intelligibility. All the concepts and approaches
proposed in this paper have been employed in the
development of a top-quality embedded unit selection TTS
system for the Greek language. The system has been
successfully adopted as part of a screen-reader solution for
mobile phones.

ACKNOWLEDGMENT
The authors would like to thank all the persons involved in

the listening tests or contributed to this work.

REFERENCES
[1] T. Dutoit, “Corpus-based Speech Synthesis,” Springer Handbook of

Speech Processing, J. Benesty, M. M. Sondhi, Y. Huang (eds), Part D,
Chapter 21, pp. 437-455, Springer, 2008.

[2] G. Bailly, W.N. Campbell, and B. Mobius, “ISCA Special Session: hot
topics in speech synthesis”, Proc. Eurospeech 2003, pp. 37-40, Geneva,
2003.

[3] B. Duggan and M. Deegan, “Considerations in the usage of text to
speech (tts) in the creation of natural sounding voice enabled web
systems”, In Proc. of the 1st international symposium on Information
and communication technologies (ISICT ’03:), pp. 433–438, Trinity
College Dublin, 2003.

[4] N. Campbell, “Developments in Corpus-Based Speech Synthesis:
Approaching Natural Conversational Speech,” IEICE trans. Inf. & Syst.,
vol. E88-D, no. 3, pp.376-383, 2005.

[5] Douglas O’Shaughnessy, “Modern Methods of Speech Synthesis,” IEEE
Circuits and Systems Magazine, Third Quarter 2007, pp. 6-23, 2007.

[6] J.-P. Peters, C. Thillou, and S. Ferreira, "Embedded Reading Device for
Blind People: a User-Centred Design," Proc. of 33rd Applied Imagery
Pattern Recognition Workshop (AIRP'04), 2004.

[7] T. Schultz, A. W. Black, S. Vogel, and M. Woszczyna, “Flexible Speech
Translation Systems,” IEEE trans. on Audio, Speech and Language
Processing, vol. 14, no. 2, pp. 403-411, 2006.

[8] S. Tomko, T. K. Harris, A. Toth, J. Sanders, A. Rudnicky and R.
Rosenfeld, “Toward Efficient Human Machine Speech Communication:
The Speech Graffiti Project,” ACM Transactions on Speech and
Language Processing, vol. 2, no. 1, Article 2, pp. 1-27, 2005.

[9] R. K. Moore, “PRESENCE: A human-inspired architecture for speech-
based human-machine interaction,” IEEE Trans. Computers, 56, pp.
1176-1188, 2007.

[10] L. Mohasi and D. Mashao, “Text-to-Speech Technology in Human-
Computer Interaction”, 5th Conference on Human Computer Interaction
in Southern Africa, South Africa (CHISA 2006, ACM SIGHI), pp. 79-84,
2006.

[11] M. Schnell, O. Jokisch, R. Hoffmann, and M. Kustner, “Text-to-speech
for low-resource systems,” IEEE Workshop Multimedia Signal
Processing (MMSP), St. Thomas, pp. 259-262, 2002.

[12] S.-J. Kim, J.-J. Kim and M.-S. Hahn, “HMM-based Korean speech
synthesis system for hand-held devices,” IEEE Trans. Consumer
Electronics, vol. 52, no. 4, pp. 1384-1390, 2006.

[13] N. Nukaga, R. Kamoshida, K. Nagamatsu, and Y. Kitahara, “Scalable
implementation of unit selection based text-to-speech system for
embedded solutions,” Proc. of IEEE ICASSP 2006, pp. 849-852,
Toulouse, 2006.

[14] D. Chazan, R. Hoory, Z. Kons, D. Silberstein, and A. Sorin, “Reducing
the footprint of the IBM trainable speech synthesis system,” in Proc.
ICSLP 2002, Denver, CO, pp. 2381–2384. 2002.

[15] P. Rutten, M. P. Aylett, J. Fackrell, and P. Taylor, “A statistically
motivated database pruning technique for unit selection synthesis,” in
Proc. ICSLP 2002, Denver, Colorado, USA, pp. 125–128, 2002.

[16] P. Tsiakoulis, A. Chalamandaris, S. Karabetsos and S. Raptis, “A
Statistical Method for Database Reduction for Embedded Unit Selection
Speech Synthesis,” in IEEE ICASSP 2008, pp. 4601-4604, 2008.

[17] Y. Ishikawa, Y. Kisuki, T. Sakamoto, and T. Hase, “Speech Synthesis
Method based on Application-Specific Synthesis Units and its
Implementation on a 32-bit Microprocessor,” IEEE Trans. on Consumer
Electronics, vol. 45, no. 3, pp. 980-985, 1999.

[18] A. Chalamandaris, A. Protopapas, P. Tsiakoulis, and S. Raptis. “All
Greek to me! An automatic Greeklish to Greek transliteration system.”
5th International Conference on Language Resources and Evaluation
(LREC 2006). Genoa, Italy, pp. 1226–1229, 2006.

[19] A. Chalamandaris, S. Raptis, and P. Tsiakoulis, “Rule-based grapheme-
to-phoneme method for the Greek,” in Interspeech 2005, pp. 2937-2940,
2005.

[20] Chu, Wai C. “Speech coding algorithms: Foundation and evolution of
standardized coders,” John Wiley & Sons, 2003.

[21] Beutnagel, M., Mohri, R., and Riley, M., "Rapid unit selection from a
large speech corpus for concatenative speech synthesis," Proc.
Eurospeech 99, Budapest, 1999.

[22] Black, A., and Taylor, P., "Automatically clustering similar units for unit
selection in speech synthesis," Proc. of Eurospeech 97, vol. 2, pp. 601-
604, Greece, 1997.

[23] Coorman, G., Fackrell, J., Rutten, P., and Coile, B. V., "Segment
selection in the LH realspeak laboratory TTS system," Proc. of the
International Conference on Spoken Language Processing (ICSLP
2000), vol. 2, pp. 395-398, 2000.

Sotiris Karabetsos received the M. Eng. degree in Electrical Engineering and
Computer Science from the National Technical University of Athens (NTUA),
in 2004 and the M.S. degree in Data Communications from Brunel University
of London, in 2003. He has also received the BS degree in Electronic
Engineering from the Technological and Educational Institution of Athens
(TEI of Athens), in 1999. He is currently working towards the Ph.D. degree in
Speech Synthesis at NTUA. From 2003, he is with the Institute for Language
and Speech Processing (ILSP). He is also with the Technological and
Educational Institution of Athens (TEI of Athens), Department of Electronics.
His research interests are speech synthesis, signal processing, and
telecommunications. He is a member of IEEE.

Pirros Tsiakoulis received his M. Eng. degree in Electrical Engineering and
Computer Science in 2003 from the National Technical University of Athens
(NTUA), Athens, Greece. He is currently working towards the Ph.D. degree in
Speech Synthesis at the National Technical University of Athens (NTUA). In
2000, he joined the Institute for Language and Speech Processing (ILSP). His
research interests include NLP, speech synthesis and speech processing. He is
a member of IEEE.

Aimilios Chalamandaris received his M.Eng. degree in Electrical
Engineering and Computer Science from the National Technical University of
Athens in 2000, and his M. Eng in Telecoms and Signal Processing from
Imperial College in 2001. He is a PhD student at NTUA, and works at the
Institute for Language and Speech Processing (ILSP), doing research on
speech and signal processing. His research interests are NLP, speech
synthesis, speech recognition, and signal processing.

Spyros Raptis received his M. Eng. degree in Electrical Engineering and
Computer Science in 1994 and his PhD in hybrid computational intelligence
for optimization, modeling and decision making in 2001, both from the
National Technical University of Athens, Greece. He has been a lecturer at
graduate and post-graduate level and has participated in a number of National
and European RTD projects on speech technology, computational intelligence,
robotics, and multimedia educational applications. He is currently a researcher
at the Voice & Sound Technology Department at the Institute for Language
and Speech Processing (ILSP) leading the speech synthesis team. His research
interests include speech processing and applications, computational
intelligence, software agents, hybrid systems and robotics.

