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Abstract—In this paper, we investigate the performance of
modulation related features and normalized spectral moments
for automatic speech recognition. We focus on the short-time
averages of the amplitude weighted instantaneous frequencies
and bandwidths, computed at each subband of a mel-spaced fil-
terbank. Similar features have been proposed in previous studies,
and have been successfully combined with MFCCs for speech and
speaker recognition. Our goal is to investigate the stand-alone
performance of these features. First, it is experimentally shown
that the proposed features are only moderately correlated in
the frequency domain, and, unlike MFCCs, they do not require
a transformation to the cepstral domain. Next, the filterbank
parameters (number of filters and filter overlap) are investigated
for the proposed features and compared with those of MFCCs.
Results show that frequency related features perform at least as
well as MFCCs for clean conditions, and yield superior results
for noisy conditions; up to 50% relative error rate reduction for
the AURORA3 Spanish task.

Index Terms—AM–FM, speech recognition, instantaneous fre-
quency, instantaneous bandwidth, filterbank overlap

I. INTRODUCTION

Time-frequency distributions and non-linear speech models
have been successfully used as feature extraction tools for ro-
bust speech recognition [1], [2], [3]. In this paper we examine
modulation related features extracted via the nonlinear AM–
FM speech model, using a mel-spaced Gabor filterbank. Short-
time amplitude, frequency, and bandwidth related features are
estimated and evaluated in the context of both clean and noisy
speech recognition.

The AM–FM model has been successfully applied in var-
ious areas of signal processing including speech, music and
image processing. Specifically in speech processing, the AM–
FM model has been used for speech analysis and modeling [4],
[5], speech synthesis [4], speech recognition [2], and speaker
identification [6], [7]. Significant improvement in speech
recognition accuracy has been shown in [2], where amplitude
and frequency modulation related features are included in the
speech recognition front-end, especially for noisy conditions.
A frequency domain alternative of instantaneous frequency,
namely the first normalized spectral moment, has also been
explored for speech recognition [1], [3], whereas bandwidth
related features are considered to carry less beneficial phonetic
information.

In this paper, we investigate the stand-alone performance
of short-time averages of the amplitude weighted instanta-
neous frequencies and bandwidths. As far as the bandwidth
is concerned we examine the recognition performance of
both its amplitude and frequency components [8], jointly
as well as independently. We also investigate the filterbank
parametrization as well as decorrelation techniques for the
frequency and bandwidth front-ends.

II. AMPLITUDE, FREQUENCY AND BANDWIDTH
ESTIMATES

The AM–FM model is a nonlinear model that describes
a speech resonance as a signal with a combined amplitude
modulation (AM) and frequency modulation (FM) structure
[9]

r(t) = a(t) cos(2π[fct+

∫ t

0

q(τ)dτ ] + θ) (1)

where fc is the “center value” of the formant frequency, q(t) is
the frequency modulating signal, and a(t) is the time-varying
amplitude. The instantaneous frequency signal is defined as
f(t) = fc + q(t). The speech signal s(t) is modeled as the
sum s(t) =

∑K
k=1 rk(t) of K such AM–FM signals.

The estimation of the amplitude and frequency components,
namely the demodulation of each resonant signal, can be
done with the energy separation algorithm (ESA), or uti-
lizing the Hilbert transform demodulation (HTD) algorithm.
ESA exploits the differential Teager–Kaiser Energy Operator
(TEO), in order to estimate the amplitude envelope |a(t)| and
instantaneous frequency f(t) signals of the speech resonance
signal r(t) [9]. The energy operator tracks the energy of the
source producing an oscillation signal r(t) and is defined as
Ψ[r(t)] = [ṙ(t)]2 − r(t)r̈(t) where ṙ(t) = dr/dt1.

According to the ESA the frequency and amplitude esti-
mates are respectively [9]

1

2π

√
Ψ[ṙ(t)]

Ψ[r(t)]
≈ f(t) ,

Ψ[r(t)]√
Ψ[ṙ(t)]

≈ |a(t)|. (2)

Usually the discrete time (DESA2) counterparts are used,

1A detailed study of the behavior of the TEO can be found in [10]
2DESA is actually a family of efficient algorithms that use various discrete

time approximations of the continuous TEO [9].



which are defined by similar equations, using the discrete
energy operator Ψd[r[n]] = r2[n]− r[n+ 1]r[n− 1].

For the purpose of the feature extraction process, a multi-
band demodulation analysis (MDA) is performed [8]. The
speech signal is decomposed into resonant signals using a
mel-spaced Gabor filterbank. The raw instantaneous frequency
(f(t)) and amplitude (|a(t)|) signals are estimated by demod-
ulating each resonant signal. Next a short-time analysis is
performed, where the instantaneous envelope is averaged and
log compressed A = log(

∫ t0+T

t0
[a(t)]2dt), whereas for the

frequency estimation an amplitude weighting is performed [8]

Fw =

∫ t0+T

t0
f(t)[a(t)]2dt∫ t0+T

t0
[a(t)]2dt

(3)

For the bandwidth estimation both frequency and amplitude
components are considered, and similar weighting with the
squared amplitude is also applied

[Bw]
2 =

∫ t0+T

t0

[
(ȧ(t)/2π)2 + (f(t)− Fu)

2[a(t)]2
]
dt∫ t0+T

t0
[a(t)]2dt

(4)

The amplitude component is considered by the term
(ȧ(t)/2π)2, which describes the rate of decay of the amplitude
envelope, and is closely related to the formants’ bandwidths.
In order to explore the relative importance of the two compo-
nents, we consider these two components separately as follows

[Bf
w]

2 =

∫ t0+T

t0

[
(f(t)− Fu)

2[a(t)]2
]
dt∫ t0+T

t0
[a(t)]2dt

(5)

[Ba
w]

2 =

∫ t0+T

t0
(ȧ(t)/2π)2∫ t0+T

t0
[a(t)]2dt

(6)

where Bf
w is the frequency component of bandwidth, and Ba

w

is the amplitude related one. We also introduce the positive
decay amplitude related component – Ba+

w , which is calculated
as Ba

w, but only in the decaying amplitude regions ȧ(t) < 0
(i.e., in the ȧ(t) > 0 regions a(t) and ȧ(t) are set to 0 prior
to bandwidth estimation).

There is a close relationship of the above frequency and
bandwidth estimates, with the first and second normalized
spectral moments. More specifically under certain conditions
they are considered to be equivalent [1]. The general n-
th spectral moment of a short-time resonant signal rk(t),
corresponding to the output of the k-th filter in a filterbank
analysis, is defined as

Sn
k =

∫ π

0

|Rk(ω)|γωndω (7)

where Rk(ω) is the fourier transform of rk(t). The n-th
normalized spectral moment is defined as

Nn
k = Sn

k /S
0
k (8)

The standard MFCC features can be considered as the DCT
of the (log) zero order spectral moment (S0, γ = 2). The
first normalized spectral moment (N1) has also been used for
speech recognition, termed as Spectral Subband Centroids [3].

0 5 10 15 20 25 30 35
30

35

40

45

50

55

60
LogAmplitude vs Frequency vs Bandwidth / TIMIT

number of bands

A
cc

ur
ac

y 
(%

)

 

 

LogAmpl

Frequency

Bandwidth

Fig. 1. Comparison of phone recognition rates for the TIMIT task, for the
(log) amplitude A (without DCT), frequency Fw , and bandwidth Bw features,
as a function of the number of bands. A 50% overlap is used in all filterbanks.

III. FREQUENCY AND BANDWIDTH-BASED
FRONT-ENDS

Next we investigate the design of a speech recognition front-
end that uses stand-alone frequency- and bandwidth-based
features. Two important issues are investigated, namely, the
selection of the filterbank parameters and the decorrelation
of the feature vector. The analysis is grounded with the
“standard” MFCC front-end.

A. Filterbank Parametrization

There are four main filterbank parameters for consideration
in the MDA analysis: (1) the number of analysis bands (filters),
(2) the type of the filters used, (3) the filter bandwidth (or
the filter overlap), and (4) the distribution of the filters in
the frequency scale. Previous studies have also examined the
aforementioned parameters for frequency-based feature sets,
however we address here some new findings.

Considering the number of analysis bands, previous studies
(e.g. [3]) have reported an optimal number of analysis bands,
beyond which there is a degradation in the recognition perfor-
mance. This result is replicated in Fig. 1, where the short-time
frequency and bandwidth feature recognition rates are plotted
in relation to the number of analysis bands (TIMIT phone
recognition task, see also the next section). For comparison,
the recognition rates using energy-based features are also
plotted (log amplitude without DCT).

We can see that energy- and frequency-based features have
similar performance until around 12 to 16 filters. Further
increase in the number of filters gives no improvement for the
energy features, whereas for the frequency features a serious
degradation is observed. Bandwidth features, in general, have
lower performance, and similar behavior to frequencies. For
the frequency and bandwidth features, the degradation is due
to the narrowing of the filters, since their overlap is kept at
50%. The bandwidth reduction results in a high influence
from the harmonics of the fundamental frequency. This is
especially pronounced in the lower and phonetically critical
bands if a log scale is used (such as in our case), where the
bandwidth becomes comparable to the interharmonic distance.
This is probably one of the reasons that some previous
efforts involving frequency features (spectral moment based



estimation) use a filterbank with frequencies linearly spaced
[3]. In order to overcome the harmonic interplay, for the
frequency and bandwidth estimation, we increase the overlap
between filters by widening their bandwidths. This results in
significant improvement of the performance of both frequency
and bandwidth features (see Table I). This is also mirrored
in the filter type, where we have observed that Gabor filters
(both frequency and time domain) have in general better
performance than the standard frequency domain triangular
filterbank, since they are wider in the central frequency region.
A direct definition of the frequency overlap for the Gabor
filterbank does not exist, instead we derive an equivalent
overlap based on the energy overlap3, which for the triangular
filterbank is 0.25 (i.e. 25%). The equivalent overlap is derived
as the square root of the energy overlap. Table I shows
the TIMIT phone recognition rates for amplitude, frequency
and bandwidth based features extracted using filterbanks with
equivalent overlap of 50%, 60%, 70% and 80% (16 mel-
spaced Gabor filters up to 8 kHz). Best recognition rates
are obtained with equivalent overlap of 70% for frequency,
80% for bandwidth, whereas no significant improvement is
observed for amplitude features (with or without DCT).

TABLE I
TIMIT PHONE RECOGNITION RATES (%) FOR AMPLITUDE, FREQUENCY

AND BANDWIDTH FEATURES FOR DIFFERENT FILTERBANK OVERLAPS.

Overlap 50% 60% 70% 80%
Features
A 56.76 55.35 53.77 51.67
ADCT 60.09 60.38 59.95 58.86
Fw 49.57 59.40 61.21 60.86
Bw 37.37 46.51 51.14 53.03

B. Decorrelation of feature vector

A common technique used for decorrelating the feature
vector for speech recognition is the discrete cosine transform
(DCT). Decorrelation is a necessary step, since the HMM
framework used for recognition usually assumes independence
between the feature vector components, i.e., diagonal covari-
ance matrices. Although for energy-based features the DCT is
beneficial, we have experimentally found that for frequency-
and bandwidth-related features only moderate correlation ex-
ists between coefficient of adjacent filters. This can be seen
in Fig. 2(c), where the Pearson correlation coefficient matrix
has been computed for the frequency Fw feature vector. For
reference, the correlation matrix for the amplitude A feature
vector is shown in (a). Also the DCT’s of the two feature
vectors are shown in (b), (d). Clearly, the frequency-based
features are only moderately correlated, and the correlation
increases after the application of the DCT. Similar results can
be obtained for bandwidth-based features. Overall, the DCT
is used only for energy-based features, whereas frequency-
and bandwidth-based features are used as are, without any
transformation. Retaining the frequency domain representation

3Computed as the overlap ratio of the magnitude frequency responses of
adjacent filters.
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Fig. 2. The correlation coefficient matrix is shown for energy- and frequency-
based feature vectors, computed for a TIMIT utterance using 16 mel-spaced
filters. The correlation matrix is shown for: (a) the (log) amplitude A feature
vector, (c) the frequency Fw feature vector, (b),(d) DCT transformed vectors
for (a),(c), respectively. Absolute correlation values are shown in greyscale;
black corresponds to 1 (fully correlated) and white to 0 (uncorrelated).

of the feature vector (instead of transforming them, e.g.,
to the cepstrum domain) is advantageous for a variety of
robust speech recognition algorithms, e.g., frequency warping,
spectral mask estimation.

IV. EXPERIMENTAL RESULTS
The following feature sets are examined: MFCC, the stan-

dard features (without C0 or energy term), ADCT , short-
time log amplitude (13 DCT coef., no C0), Fw, short-time
instantaneous frequency estimated by (3), N1, the first nor-
malized spectral moment estimated by (8) using the same
frequency-domain Gabor filterbank used in the MDA analysis,
Bw, short-time bandwidth (4), Bf

w, the frequency component
of bandwidth (5), Ba

w, the amplitude component (6), Ba+
w ,

the decaying amplitude component. All feature vectors are
augmented by their first and second time-derivatives. A Gabor
filterbank is used for all features, with the exception of MFCCs
where the standard triangular filterbank is used. 50% is overlap
is used for the amplitude features and an equivalent of 70%
overlap is used for frequency and bandwidth based features.

A. Clean recording conditions

Performance was evaluated for the phone recognition task
on the TIMIT database. Using the HTK framework, 3-state
phonemic HMMs with a mixture of 16 Gaussians per state
were trained using 4 reestimation iterations. Three different
filterbanks were used, having 16, 20 and 26 mel-spaced filters
up to 8 kHz. The results are summarized in Table II.

The recognition performance of the short-time frequency
(Fw) features is better than the standard MFCC features in the
cases of filterbanks with 16 and 20 filters, but slightly worse
in the 26 filters case. This suggests that in the case of 26 filters
a wider filterbank should probably be used. Furthermore the



TABLE II
PHONE RECOGNITION RATES (%) ON THE TIMIT DATABASE.

#Filters 16 20 26
Features
MFCC 60.20 60.58 60.66
ADCT 60.09 60.68 61.16
Fw 61.21 61.34 59.88
N1 60.54 61.02 60.38
Bw 51.14 51.22 49.05
Bf

w 48.17 47.67 44.14
Ba

w 48.06 49.37 48.15
Ba+

w 50.49 51.31 50.95

spectral moment estimation (N1) also benefits from the use of
a wider filterbank, having similar performance to the Fw. The
performance of bandwidth related features is also noteworthy,
since it exceeds 50%. The amplitude related component seems
to be a better estimate than the frequency counterpart, and
more specifically the decaying amplitude estimation.

Furthermore, we have augmented the frequency features
with the log energy coefficient (E), and the zeroth cepstral
coefficient (C0), and compared it with the corresponding
MFCC features. The results are summarized in Table IV. The
performance of frequency feature vector plus energy (or C0)
compares well with the MFCC vector plus energy (or C0).

TABLE III
PHONE RECOGNITION RATES (%) ON THE TIMIT DATABASE USING

AUGMENTED VECTORS

#Filters 16 20 26
Features
MFCC+E 64.06 64.28 64.10
MFCC+C0 64.16 64.29 64.24
Fw+E 63.78 63.99 62.55
Fw+C0 64.28 64.11 62.73

The results shown in Table II, as well as in Table IV, suggest
that frequency related features can be used as an alternative
ASR front-end, with very good performance. This has been
verified also on digit and word-recognition tasks [11]. This
can be achieved with the use of wider filterbanks in order
to overcome the harmonic influence. Moreover the bandwidth
estimates carry significant phonetic information.

B. Noisy conditions

Frequency-based features have been shown to be robust
in additive noise [2], [3]. We performed a preliminary study
of noisy speech recognition with the new feature extraction
technique, on the Spanish Task of the Aurora 3 database.
The recognition experiments were performed on the 8 kHz
dataset, which was analyzed with a filterbank of 12 Gabor
filters equally spaced in the Mel frequency scale up to 4 kHz.
The results are summarized bellow, for three different noise
situations: well-matched (WM), medium-mismatched (MM),
and high-mismatched (HM). It is clear that the frequency
features perform significantly better in all noise situations.
Moreover the recognition improvement increases as the noise
situation gets worse.

TABLE IV
WORD RECOGNITION RATES (%) ON THE AURORA 3 SPANISH TASK

WM MM HM
MFCC+E 86.88 73.72 42.23
Fw+E 92.22 84.53 73.56

V. CONCLUSIONS

We investigated the use of short-time amplitude weighted
instantaneous frequencies and bandwidths as a stand alone
ASR front-end. Our investigation showed that a frequency
front-end can be superior to a power spectral based front-end,
especially in noisy situations. We also found that bandwidth
features can carry substantial phonetic information that can be
exploited for speech recognition. Designing the appropriate
filterbank for frequency- and bandwidth-based features was
essential to achieving this high performance, in order to avoid
the influence of the pitch harmonics. In this study, we used a
Gabor filterbank with mel-spaced center frequencies, and 70%
filter overlap. However a more extensive research is needed
to determine the optimal filterbank setup. Complementary
information to the averages of instantaneous frequency and
bandwidth must also be investigated in the ASR context.
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