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Abstract. The automatic evolution of neural networks is both an attractive and a 
rewarding task. The connectivity matrix is the most common way of directly 
encoding a neural network for the purpose of genetic optimization. However, this 
representation presents several disadvantages mostly stemming from its inherent 
redundancy and its lack of robustness. We propose a novel representation scheme 
for encoding complete strictly-layered feedforward neural networks and prove that it 
is optimal in the sense that it utilizes the minimum possible number of bits. We 
argue that this scheme has a number of important advantages over the direct 
encoding of the connectivity matrix. It does not suffer from the curse of 
dimensionality, it allows only legal networks to be represented which relieves the 
genetic algorithm from a number of checking and rejections, and the mapping from 
the genotypes to phenotypes is one-to-one. Additionally, the resulting networks have 
a simpler structure assuring an easier learning phase. 

1   Introduction 

As stochastic search processes, genetic algorithms (GA’s) provide no estimation on 
the time required to locate an adequate solution to a given problem. They use very 
limited (if any) a priori information on the specific problem they are addressing. In 
this sense, they are inadequate for on-line execution in time-sensitive problems. 

On the contrary, GA’s have very often been used as a high-level tool to evolve 
other systems that are more suited for on-line performance. Indicative examples 
include the definition of the input partitions or other parameters of a fuzzy system, the 
determination of appropriate values for the parameters of another GA, the design of 
an appropriate set of detectors for pattern recognition, etc. The evolutionary design of 
neural networks by genetic means may very well be placed in this context. 

In spite of the intense research in the area of neural networks, globally applicable 
rules for their design are still missing and their development is still based on 
heuristics and rules of thumb. Design parameters include the network topology, the 
determination of its connectivity pattern, the selection of the neuron activation 
functions, the training algorithm used to calculate the weights of the connections, etc. 



The design of a neural network by genetic means restates the problem in the 
context of an optimization process. Automatically evolving a network that is 
“optimal” (in the sense of a certain criterion) is particularly attractive since it offers a 
general methodology for the design of a “well-behaving” neural system. 

The work in the field of evolving neural networks is quite extensive and certain 
surveys are also available (e.g. [1]). The various approaches may be roughly divided 
into categories based on different characteristics of the process. 

Based on the genotypic representation used we can identify (a) direct encoding 
schemes (e.g. [2], [3], [4]) where the GA uses a simple and easily decodable 
representation of the neural network such as its connectivity matrix and (b) indirect 
encoding schemes (e.g. [5], [6], [7]) such as production rules, grammars, etc. where 
decoding is not so trivial. Based on the type of network being evolved, we may 
identify approaches for the design of (a) feedforward networks or (b) recurrent 
networks. The selection of the required class of neural networks is, clearly, problem-
dependent. A last classification can be identified that is based on the type of network 
parameters being evolved. We can identify methods that (a) optimize only the 
network topology, (b) optimize the values of the synaptic weights and other 
parameters of a fixed network, or (c) optimize both the topology and the parameter 
values of the network. 

In the remainder of the paper we will only consider the case of complete strictly-
layered feedforward neural networks. A neural network is said to be layered if its 
hidden neurons are organized in layers. No connection can appear among neurons of 
the same layer. A network is strictly-layered if it is layered and the neurons of a layer 
can only accept inputs from neurons of the immediately preceding layer. A network is 
complete if every neuron of a layer is connected to all the neuron in the previous 
layer. 

2   Connectivity Matrices 

The connectivity matrix is the most commonly used representation of a neural 
network. It is a square binary matrix, C, of dimension equal to the total number of 
neurons in the network (including input, output and hidden neurons). Each element of 
the matrix, say C(i,j), indicates the presence or absence of a connection from neuron i 
to neuron j. For a feedforward network the connectivity matrix has an upper-
triangular form. 

In the connectivity matrix of a feedforward neural network, the number of 
elements that can be non-zero is given by: 

n n h m h h hgene = + + − +( )( ) ( )1
2 1  (1) 

where n is the number of network inputs, m is the number of network outputs, and h is 
the number of hidden neurons. 

The representation of neural connectivity patterns through their respective 
connectivity matrix contains redundant information. Thus, while the two networks 
displayed in Fig. 1 are functionally equivalent, their respective connectivity matrices 
differ. Of course, by appropriate renumbering (i.e. exchanging columns and rows) the 



two matrices can be made identical. The implementation of an algorithm that can 
transform the different versions of a matrix to a single is a relatively straightforward 
task. 
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Fig. 1. Two equivalent neural networks 

In the context of genetic search, a representation that relies on a direct coding of the 
significant bits of the connectivity matrix is bound to such a “symmetry” and the 
formulated mapping from the genotype domain (coded individuals) to the phenotype 
domain (neural networks) is, inherently, many-to-one. This is true not only for strictly 
layered neural networks but for any type of feedforward network as well. 

For a feedforward network, the required number of bits for coding only the 
necessary information of the connectivity matrix is given by Eq. (1). Thus, a typical 
genetic representation would need to utilize ngene bits. 

It is important to note that random combinations of these bits do not always 
produce legal networks. To quantify this argument, it is interesting to get an estimate 
of the percentage of legal networks to the illegal ones. To this end, let us consider the 
simple problem of designing a feedforward neural network with two inputs (n=2), one 
output (m=1), and (up to) four hidden neurons (h=4). This gives a total of seven 
neurons. The dimension of the connectivity matrix of such a network will be 7×7 
containing 20 significant bits (i.e. bits that can be non-zero) thus leading to 220 
different possible combinations. A set of 100000 such bit series were randomly 
produced and the respective networks were constructed and simplified. The statistics 
for the resulting networks are shown in Table 1. 

Table 1. Statistics for 100000 neural networks of dimension 2×4×1 randomly produced using 
direct coding of the significant bits of the connectivity matrix 

Hidden Neurons %  Num of Groups %  Num of Layers1 % 
0 (illegal) 11%  0 (illegal) 11%  1 89.80% 
1 17%  1 24%  2 9.30% 
2 25%  2 37%  3 0.87% 
3 28%  3 23%  4 0.03% 
4 19%  4 5%   100% 

 100%   100%    

                                                           
1 Only 7% of generated networks presented layering. The percentages in this table are with 

respect to those layered networks. 



The statistics become even more problematic for the case of more complex 
networks.  Therefore, for realistic problems it is almost impossible to control the 
quality of the networks that are randomly created based on a direct coding of the 
significant bits of the connectivity matrix and evaluated by a genetic algorithm. 
Additionally, it is quite rare for a layered network to randomly come by. Thus, for 
networks of this type a different encoding scheme is obviously required. 

From the discussion above, it is quite obvious that a different network 
representation scheme is necessary especially for the case of genetically evolving 
strictly layered neural networks. 

3   The Proposed Representation Scheme 

Let us consider again the case of a strictly-layered feedforward neural network of n 
inputs, m outputs and h hidden neurons. Then the total number of neurons on the 
network will be N=n+m+h. 

Consider a string of h binary digits receiving the values “0” or “1”. If we assign to 
the symbol “1” the meaning “new layer” and to the symbol “0” the meaning “same 
layer”, then we may directly express through a string of h such symbols any complete 
strictly-layered feedforward neural network. 

This way, the complete neural network of Fig. 2 having n=3, m=2 and h=7 (N=12), 
can be represented by the simple string “1000100”. In its general form, the proposed 
representation can be depicted as shown in the Fig. 3. 

Since, the number of 1’s in the string explicitly controls the number of layers in the 
resulting network we may directly favor “shallower” network architectures by 
introducing an appropriate bias during the random instantiation of such strings which 
assigns higher probability to 0’s than to 1’s. Additionally, we may impose the demand 
for at least one hidden layer by fixing the leftmost bit of the string to “1” and allowing 
only the other h-1 bits to vary. In this case, however, the number of hidden neurons in 
all resulting networks will be exactly h as discussed below. 

By relaxing the requirement for at least one hidden layer (thus allowing the 
leftmost digit of the string to receive the value “0”) and omitting all the “0” that 
appear in the left side of the first “1” in the string, we may directly use the same 
scheme to represent networks of fewer hidden nodes or even without any hidden node 
(string consisting entirely of 0’s). Such an approach offers additional properties to the 
representation scheme, such as its independence from the problem dimensions, since: 
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≡  (2) 

4   Properties and Advantages 

Compared to the direct encoding of the significant digits of the connectivity matrix, 
the proposed representation scheme presents a set of significant advantages. 



55

66

44

77

99

1010

88

1111

1212

11

22

33

11111111 00000000 00000000 00000000 11111111 00000000 00000000

 

Fig. 2. The representation of the complete strictly-layered feedforward neural network 
of size 3×4×3×2 (n=3, m=2 and h=7) 
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Fig. 3. The representation of a complete strictly-layered feedforward neural network 

Adequacy: The direct encoding scheme of the connectivity matrix allows for the 
representation of legal neural networks that the proposed model cannot. Examples of 
such networks are networks that are not complete (i.e. networks whose neurons are 
not fully interconnected among successive layers) or not strictly layered (i.e. networks 
whose neurons may be arbitrarily interconnected, e.g. input neurons directly 
connected to output neurons). However, such an economy on the number of 
connections (as in the case of non-complete networks) or the generalized “sprawl” 
connectivity patterns (as in the case of networks that are not strictly layered), do not 
necessarily lead to more powerful or adequate networks. Not only is there no 
evidence that strictly-layered networks are by any means inferior to more generalized 
networks but, on the contrary, such networks tend to present benefits during the 
training phase due to their simplified structure. 

Complexity: An important advantage of the proposed representation scheme is its 
computational simplicity: it requires O(h) digits as opposed to the O(h2) required by 
the direct encoding scheme, thus avoiding the well known “curse of dimensionality” 
problem. So, the search space is effectively reduced and the problem of determining 
adequate network structures is kept tractable even for relatively large networks. For 
example, for the case of the network of Fig. 2, the proposed scheme requires just 7 
bits (introducing a search space of 27 configurations) as opposed to the 62 bits 



required by the direct encoding scheme (leading to a search space of 262 
configurations)! 

Correctness. The proposed scheme does not allow the representation of illegal 
networks configurations. So, any arbitrary string of digits corresponds to a legal 
network configuration. This property relieves the genetic search process from the 
need to perform any checking either to the randomly generated individuals or to the 
individuals that result from the application of genetic operators during recombination. 
On the contrary, the direct encoding scheme cannot guarantee the validity of the 
network configurations involved in the search process, rendering the extensive use of 
checking absolutely necessary during the initialization and recombination phases. 
Such a checking will result in certain individuals being rejected or “punished” by 
assigning particularly low fitness values during their evaluation. However, such 
checking and rejection can introduce severe obstacles to the search process since the 
genotypic resemblance (which is a main driving force of a genetic algorithm) will no 
longer imply phenotypic resemblance of even similarity in the assigned fitness values. 

Properties of the Mapping. It can be shown that the genotypic-to-phenotypic 
correspondence obtained by the proposed scheme is “1-1” and “over” mapping from 
the domain of binary strings of appropriate length to the domain of neural network 
configurations. This suggests that (a) two different strings can never correspond to the 
same network, and (b) for any complete strictly-layered feedforward neural network 
there is a corresponding string to describe it. 

5   Mathematical Proof of the Optimality of the Mapping 

The main target of the present paragraph is to determine the cardinality of the set of 
complete strictly-layered feedforward neural networks. 
In Theorem 3, we prove that the cardinality of the set of complete strictly-layered 
feedforward neural networks that contain at most h hidden neurons equals 2h. 
Similarly, the cardinality of the set of strings the are composed of h binary digits is 
also 2h. Thus, since the cardinality of the set of such neural networks and of the set of 
binary strings is the same, and given that the performed mapping is 1-1, we can prove 
that the proposed representation scheme is optimal in the sense that it is minimal to 
the size of the required bits. I.e. there is no scheme that can represent the set of 
complete strictly-layered feedforward neural networks using a smaller number of bits. 

Let us consider a neural network containing at most h hidden neurons. We wish to 
determine the number of all its possible configurations, i.e. the number of ways h or 
less neurons can be partitioned to any number of hidden layers. Obviously, each layer 
can contain any number of neurons between 1 and h and the sum of all the neurons 
must not be higher that h. 

Fig. 4 displays all the possible configurations of a complete strictly-layered 
feedforward neural network having h=4 or less hidden neurons. 

We will first calculate the number of possible configurations of a complete strictly-
layered feedforward neural network of exactly h hidden neurons divided in exactly l 
hidden layers where, obviously, l≤h. 
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Fig. 4. Graphical representation of all the possible configurations of a complete strictly-layered 
feedforward neural network having at most h=4 hidden neurons. The subplots display all the 
configurations having exactly (a) h=1, (b) h=2, (c) h=3, and (d) h=4 neurons. The number of 
inputs and outputs is arbitrary. The thick arrows represent many-to-one and one-to-many 
connections. 

Theorem 1. The number of possible configurations of a complete strictly-layered 
feedforward neural network that contains exactly h hidden neurons divided in exactly 
l hidden layers is given by: 

N h
h l ll

h = −
− −
( )!

( )!( )!
1

1
 (3) 

Proof. The problem of determining the number of possible configurations for 
exactly h neurons divided in exactly l layers is equivalent to the following problem: 

“Consider a binary string of h 0’s. We want to determine the number of ways we 
can insert l-1 1’s between the 0’s. The insertions take place at the h-1 spaces between 
the zeros and each such space can only accept up to one 1.” 

In the above transformed version of the problem, the 0’s play the role of neurons 
and the 1’s the role of barriers separating consecutive layers. 

The number possible combinations for placing r identical objects to n numbered 
boxes with no more than one object per box is given by: 

C n r P n r
r

n
r n r

( , ) ( , )
!

!
!( )!

= =
−

 (4) 

So, for r=l-1 and n=h-1, Eq. (4) takes the form: 

N C h l h
h l ll

h = − − = −
− −

( , ) ( )!
( )!( )!

1 1 1
1

 
Q.E.D.■ 

We will proceed with the calculation of the number of possible configurations of a 
complete strictly-layered feedforward neural network with exactly h hidden neurons 
distributed in any number of hidden layers. 



Theorem 22. The number of possible configurations of a complete strictly-layered 
feedforward neural network with exactly h hidden neurons distributed in any number 
of hidden layers is given by: 

N h h= −2 1  (5) 

Proof. Obviously, h hidden neurons can form any number from 1 (vertical form) to 
h (horizontal form) hidden layers as shown in Fig. 5. So, the total number of different 
configurations can be calculated as the sum of the quantities given by Theorem 1 Eq. 
(3) for l=1...h, i.e. 

N N h
h l l

C h h l
h
h l

h
l

h
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h
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Fig. 5. Two extreme configurations of a network with h hidden neurons 

It is known that: 
h
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h
l

h
l

h
l

h
l

−
−
F
HG
I
KJ =

−
−
F
HG
I
KJ ⇒
F
HG
I
KJ =

−F
HG
I
KJ +

−
−
F
HG
I
KJ

1 1
1

1 1
1

 (7) 

Thus, summing from l=1 to h-1, we get: 
h
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Employing the binomial expansion of ( )x y+ 2  for x=y=1 and n=h we can arrive at: 
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2 It is easy to see that the problem of determining Nh is equivalent to the problem of counting 

the additive partitions of integer h, which is a typical problem in the field of discrete 
mathematics. 



So: 
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The proposed scheme uses h bits for the representation networks having up to h 
hidden neurons (and so does an h×h connectivity matrix). Such networks of lower 
dimension can be represented by padding an appropriate number of 0’s to the left of 
the string (or by inserting rows and columns of all zeros in a connectivity matrix). The 
following theorem takes these lower dimension networks into account. 

Theorem 3. The number of all possible configurations of a complete strictly-
layered feedforward neural network having up to h hidden nodes distributed in any 
number of hidden layers is given by: 

N h h[ , ]1 2=  (13) 

Proof. The number of configurations of up to h neurons is, clearly, the sum of the 
number of configurations of exactly i neurons, for i=1...h. 
Obviously, this sum is: 
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