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Abstracts: Genetic algorithms (GA’s) are powerful stochastic search algorithms for general problem solving. Their effectiveness 
as a tool for evolving other systems has been early identified and has gained increasing research interest. Fuzzy systems may 
strongly benefit from GA’s since they involve a quite large number of parameters that need to be tuned for the system to achieve 
the required performance. Such parameters include (but are not limited to) the definition of the fuzzy sets stored in the fuzzy rule 
base. The parameter tuning process becomes more important for the cases where the fuzzy system is meant to be used for function 
approximation. The evolution of a fuzzy system via GA’s involves stochastic varying of the parameters defining the fuzzy sets. It 
is, thus, important for the “robustness” of the overall process that these parameters are appropriately defined. The conventional 
representation of fuzzy sets through their membership function values at discrete points or through the a-level set representation do 
not possess the required characteristics to be directly exposed to GA search. A more efficient representation scheme based on the 
latter is proposed and its properties are investigated. The advantages of this scheme are illustrated through the non-toy application 
of evolving a fuzzy system for inverse robot kinematics by the use of GA’s. It is argued that the proposed fuzzy set representation 
possesses better properties from the stochastic search point of view. 
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1. Introduction 
Genetic Algorithms 

Genetic algorithms (GA’s) have become one of the main attractions for researchers and practitioners and 
there is a very good reasons for that: they work! They are model-free estimators, since they require no 
information relatively to the system that they are trying to model or optimize except for a fitness 
measure, i.e. a measure of how well the algorithm did in the selection of a specific parameter set. 

Although the mechanics of GA’s are rather simple, their remarkable success in dealing with complex real 
problems has not yet been thoroughly explained. Put in other words, they do work but we don’t fully know 
why and how. What is certain is that they process a large amount of useful information, the so-called 
schemata, and they do it rather fast through their implicit parallelism [1]. Another unique feature of GA’s is 
that they work with a population of points rather than a single search point and use probabilistic transition 
rules rather than deterministic. This enables them to escape local minima in multimodal surfaces and proceed 
with their quest for global optimality. 

Possessing such attributes, genetic algorithms qualify as an excellent general purpose tool which 
explains the vast number of diverge areas they have been successfully used for. 

Like any process that involves probabilistic search, GA’s are better suited for off-line processes since 
their response time (i.e. the time required to find a “satisfactory” parameter set) cannot be known in 
advance or even be considered constant. 

From the problem categories they address, it has been early identified that one of the most interesting is that of 
the design and/or tuning of a system that will exhibit a required behavior, based on a performance measure. 
GA’s are possibly not very well suited for on-line performance themselves but they are certainly suited to 
design systems to exhibit it. 

To stress this point through a simple example, one practice could be to use a GA to solve the inverse 
kinematic problem of a robot arm based solely on its forward kinematics. But a better practice would be to use 
a GA to evolve an appropriate system (e.g. a fuzzy or neural system) that could perform the same task. It is 
obvious that the latter is much more meaningful. This very task we will undertake at a later section. 

Fuzzy Systems 

On the other hand, fuzzy systems are well suited for on-line performance but require detailed domain-
specific knowledge in the form of linguistic production rules. Often such knowledge is difficult or 
expensive to obtain, or it simply does not exist, especially for multivariable complex systems and 
processes. Even when such knowledge can be obtained, it is a common (and necessary) engineering 
practice to fine-tune it based on precise numerical data. 

It is quite tempting (and rewarding) to try to automatically design a fuzzy system by the use of an 
appropriately arranged genetic algorithm. Designing a fuzzy system mainly consists of building its rulebase, 
which decomposes to defining and associating appropriate fuzzy sets. At some cases a specialized inference 
mechanism may also be required. 

No doubt, one of the most demanding tasks required by a fuzzy system is that of the approximation of an 
unknown function based on input-output data since the error is of major importance (as opposed to the use of 
fuzzy systems for classification purposes). In this endeavor, it is crucial that the values of the fuzzy system 
parameters are accurately set, i.e. the membership functions’ shape and position are optimized. 

The use of GA’s to determine the parameters of a fuzzy system is not new; numerous related 
publications can be found that use various techniques to merge GA’s with fuzzy and neural models, 
some indicative ones being [4] and [5]. In this paper we address this problem fundamentally: from the 
representation of the fuzzy set itself. 

2. Representation of Fuzzy Sets for GA Purposes 
In the sequel, only convex and normal fuzzy sets will be considered since they are the dominating and most useful 
form of fuzzy sets for inference purposes. There are two widely used ways to represent such a fuzzy set (figure 1): 
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1. Quantization of the universe of discourse and storing of the values of the membership function at 
each point. 

2. Quantization of the membership values and storing of the respective intervals at each level. 

 
Figure 1: The Various Representation Schemes. Quantization of (a) the Universe of Discourse, 

(b) the Membership Grades. 

While the former is the most common, the latter is argued to be the more efficient [2] and makes use of 
the resolution identity theorem to express a fuzzy set (and the related operations) as a superposition of 
crisp sets, namely its α-level sets (or α-cuts): 

P P=
< ≤

α α
α0 1
U  

From a representation point of view, the first method uses n parameters for a fuzzy set. It is clear that a 
random change of one of the representation values may result in problems: the fuzzy set may cease to be 
convex and/or normal as illustrated in figure 2 (a). 

The second method uses a number of parameters proportional to the number of required levels, say m. This 
method has more severe problems when exposed to a genetic search: the fuzzy set may become nonsense as 
illustrated in figure 2 (b). 

 

 
Figure 2: Problems with the Representations 

Invoking a GA to search directly the definition space of a fuzzy set represented either by the first or the 
second method, will most probably result in undesirable situations when subject to mutation and 
crossover operators. To avoid such situations, a common way around would be to perform thorough 
checking each time the crossover and mutation operations are performed. This is both time consuming 
and makes the problem much harder for GA to handle since: 

• it introduces additional “artificial” nonlinearities in the problem, 

• important similarities and highly fit schemata will be difficult to find, and 

• areas of the problem space will be cut off during checking. 

After all, GA’s are blind since they work with a coding of the parameters and not the parameters 
themselves. These problems imply a representation that is poorly suited for direct GA search. 

3. The Proposed Representation Scheme 
The proposed GA-oriented representation is based on α-cuts but not in the left-point-right-point interval 
form proposed in [2]. A rather recursive way is used to represent each cut based on the previous cut.  

This representation: 

• Guarantees that the fuzzy set will remain convex and normal for every combination of the involved 
parameters. 

• Like the other methods mentioned, it guarantees a unique representation, i.e. each set of parameters 
corresponds to a single fuzzy set and vice versa. 

• Is not more memory consuming than [2] since it uses the same number of parameters (two per level set). 
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• Possesses interesting geometric properties. 

Consider a universe of discourse X, and a fuzzy set P defined on X. Furthermore, assume a set of ordered 
levels αi, i=1,..., m, such that: 0<α1<α2<...<αm=1. Then P can be decomposed into α-level sets 
according to the resolution identity theorem: 

P i i
i

= αU P

]

                             (1) 

In [2], each level set Pi is expressed by the interval: 

[x xi
l

i
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We introduce a different representation that makes use of two different parameters, namely ci and li such that: 

ci∈(-1, 1) and li∈(0, 1]                          (3) 

These two parameters do not define Pi explicitly (as the  and  pair) but with respect to the 
immediate lower level set, Pi-1 (figure 3). The role of ci is to position Pi with respect to Pi-1: 
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A value of zero indicates that the two centers coincide while a value of +1 (-1, respectively) indicate that 
the center of Pi is at the rightmost (leftmost) position of Pi-1. 

The role of li is to capture the width of Pi but not with respect to the width of Pi-1 but to the maximum 
width it could have at the specific position ci, which is: 
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This choice guarantees that for all combinations of ci and li the representation will always be both valid 
and unique. Thus, employing a GA on a representation scheme of this kind is straightforward requiring 
no checking during mutation and crossover (or any other possible bit-altering operators) and the search 
space can be argued to be “smoother”. 

Switching from and to the Proposed Representation 

To keep the formulas short, we introduce: 
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From (4) and (5), taking into account (6), it is straightforward to express ci and li as a function of , , , 

and . 
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The other way round we can easily arrive at: 
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Figure 3: Switching from and to the Proposed Representation. 

Geometric Properties 

The proposed representation possesses some interesting properties. For example, decreasing the 
parameter li of one of the level sets, will result in an proportional shrink of all the higher level sets. 
Moving the center ci of a level set, moves all the higher level sets the same way. 

Thus, a “smooth” change in one of the representation parameters of a set causes a “smooth” alteration of 
the set. Moreover, the lower the cut whose parameters are being changed, the greater the effect that these 
changes will have on the overall set. 

Implementation 

To illustrate the recursive nature of the proposed definition, we provide a C-like code fragment that 
performs the required conversion from the proposed representation to the standard α-level set 
representation. Note that the first α-cut in the proposed representation is defined with respect to the 
universe of discourse. 

//Index j stands for i-1 
xjl = left-boundary; xjr = right-boundary; 
 
for (uint i=0; i<nCuts; i++) { 
 Cj = (xjr + xjl) / 2.; 
 Lj = xjr - xjl; 
 
 xil = Cj - ci*Lj/2. - li*Lj/2.*(1.-fabs(ci)); 
 xir = Cj - ci*Lj/2. + li*Lj/2.*(1.-fabs(ci)); 
 
 // xil and xir are now valid and the 
 // membership value for the [xil, xir]  
 // interval is 1./nCuts*(i+1) 
 
 xjl = xil; xjr = xir; 
} 
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Figure 4: Fitness Evaluation for the Simulation 
 

4. Simulation 

To evaluate the proposed representation, we address the problem of automatically designing a fuzzy 
system for inverse robot kinematics by the use of genetic algorithms, based solely on the forward model 
of robot at hand. The design of the fuzzy system implies the design of the rule base and the involved 
fuzzy sets. 

For simplicity, we will consider a simple planar 2R robot arm. The forward kinematic formulations for 
the specific robot is given by: 

x = d1 cos(θ1) + d2 cos(θ1+θ2) 
y = d1 sin(θ1) + d2 sin(θ1+θ2) 

and the inverse kinematic formulations by: 

φ = tan(y/x) 
θ1 = atan2(y - d2 sin(φ), x - d2 cos(φ)) 
θ2 = φ - θ1 

Addressing this problem with a fuzzy system will require fuzzy rules of two-inputs and two-outputs. So, 
each of the rules will have the form: 

IF x is A AND y is B THEN θ1 is C AND θ2 is D 

We will demand from the GA to produce and optimize nRules such fuzzy rules. Each of the four fuzzy 
sets involved in each rule will use the proposed representation scheme and will be decomposed to 
nLevels level sets. Taking into account that for each level set two parameters are needed and assigning 
nBits bits per parameter, we arrive at a total of: 

nBits

nLevels

nRules

bits
parameter

parameters
level

levels
set

sets
rule

rules
individual

× ×

× ×

×

2

4 ×  

bits per individual of the GA population. The module that will be responsible for calculating the fitness 
of each individual, is depicted in figure 4. 
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The following remarks can be made: 

1. The second joint angle has been appropriately constrained so as to exclude redundant solutions, 
specifically θ2≥0 (e.g. θ1∈[0, π/2] and θ2∈[0, π]). 

2. The link lengths were chosen in such a way that l1>l2 so as to avoid negative values in the y axis. 

3. With the above assumptions, the universes of discourse for the input variables will be: x∈[-d2, 
d1+d2] and y∈[0, d1+d2]. To define input fuzzy sets it is much more convenient for the GA to 
augment these intervals by a small proportion so that the sets can be efficiently positioned near 
the limits. 

4. Although the outputs of the fuzzy system are the joint angles θ1 and θ2, the error is calculated 
based on the difference of actual and required x and y. This is a common practice in inverse 
kinematics analyses and assures that we are trying to minimize the correct error criterion. 

5. The fuzzy sets produced by the GA are first converted to the standard membership 
representation in order for standard inference techniques to be employed. An alternative would 
be to convert them to the left-right-point interval representation of α-cuts and apply the 
operations proposed in [2]. 

6. It is possible that some parameter sets define such fuzzy sets that no rule is activated for a 
specific pair of joint angles θ1 and θ2. In these cases, we “punish” the respective individual of 
the GA population by adding a large quantity to its cost (e.g. 100 or 1000). In this way we 
ensure that the search is soon directed to individuals that cover the complete input universes. 

7. If membership representation was used for the fuzzy sets, then instead of the 2×nLevels 
coefficient in the bit calculation formula, there would be a nQuanta coefficient. It is obvious 
that to achieve an acceptable accuracy, nQuanta should be significantly larger than 2×nLevels. 
Moreover, with membership representation additional checking for convexity (and normality) 
would be required. 

Results 

Clearly the accuracy of the resulting database inference process, is directly affected by the specific 
values chosen for nBits, nLevels, and nRules. For the test purposes of this simulation, the follow values 
were used: 

nBits = 16, nLevels = 5, and nRules = 5 

An equally important parameter in this case, is the value of nQuanta, which affects the inference process 
and was chosen to be equal to 20. An instance of the simulation execution (with nLevels = 3 and 
nQuanta = 10) is provided in figure 5. An indicative progress of the best individual fitness of the GA 
popu lation is given in figure 6. 
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Figure 5: An Instance of the Fuzzy Database Evolution 

 

 

Figure 6: Evolution of the Best Fitness 

5. Conclusions - Future Work 

In the lack of global systematic methodologies to dictate efficient encoding of parameters for use with 
GA’s, the need for “robust” representations is central since it greatly affects the performance and search 
capabilities of GA’s. Imposing constraints to the individuals of a genetic algorithm externally introduces 
severe obstacles in the search process as opposed to building constraints intrinsically into the 
representation. 

The novel fuzzy set representation proposed, captures the specific constraints relating to the fuzzy 
inference process. It intrinsically imposes convexity and normality to the fuzzy sets, thus relieving the 
GA from time-consuming checking and discarding of unacceptable individuals that the standard 
representation schemes tolerate. 

The recursive definition of fuzzy sets under this representation makes it rather interesting to extract an 
equality measure for two fuzzy sets defined this way. This equality measure could be directly used for 
inference purposes. 
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It would also be interesting to use adaptive fuzzy systems techniques and error-minimization techniques 
inspired by neural networks in combination with the proposed fuzzy set representation [3]. However, 
most of these techniques suffer from the single point local searching curse: local minima. 
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