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Abstract: This paper provides a blueprint of a system architecture that 
attempts to decompose a complex behavior, that a control system is 
desired to exhibit, to combinations of simple independent sub-systems 
each one represented by an appropriate agent and having appropriate 
relevance under specific circumstances. The main issues of such an 
architecture are discussed and several possible choices available 
during its design and implementation are presented. As an illustration 
of this approach, the case of a system addressing the local path 
planning problem for an indoor mobile robot is presented. 
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Introduction 

The proposed system is a problem-solving architecture based on the principle of 
decomposition. A complex problem is decomposed to simpler ones, an appropriate 
subsystem is created to meet each sub-problem’s requirements, and then an overall 
system output is obtained by appropriately merging the partial outputs of these 
subsystems. 

In a broader sense a similar idea stands behind all systems that explicitly or implicitly 
make use of basis functions and produce outputs as (linear) combinations of them. 
Examples of systems that explicitly define and use basis functions are the radial basis 
function neural networks (RBFNs) and the B-spline networks. Fuzzy systems implicitly 
define and use basis functions known as fuzzy basis functions (FBFs) [1, 2]. 

This analogy may be extended even to the cases of CMAC, Kawato’s non-recurrent 
single-layer neural network, and hierarchical neural networks may be considered to be 
members loosely included in the above family, since they formulate some mappings at 
the first layers and use these as building blocks to locally approximate a desired overall 
function. 

All these paradigms share many common properties and can be studied uniformly under 
the general class of associative memory networks (AMNs) [3]. Technically, the AMN 
class itself is considered to be a subclass of artificial neural networks. 

Since there exist good arguments in favor of designing and building artificial systems in 
terms of human-like notions, we will take advantage of this throughout the following 



discussion. So we may equivalently state the problem as follows: we wish to build a 
system that exhibits a certain behavior. To this end we try to decompose this behavior to 
a combination of simpler behaviors and design appropriate subsystems to exhibit them 
which we may call behavioristic elements. We provide the system with the means to 
efficiently mix such elements, i.e. with the ability of behavior coordination. Each 
element is independent and self-sufficient. These characteristics make it very similar to 
a concept widely used in both artificial intelligence and computer science: the agent. 

So, up to now, we see that our subsystems may be regarded from various perspectives,  
e.g. as behavioristic elements, as basis functions, or as agents, all of which refer to the 
same characteristic: their ability to serve as building blocks for reducing a problem 
solution to appropriate combinations of partial solutions to sub-problems. 

The analysis that follows is qualitative rather than strictly mathematical and aims at 
highlighting some key issues related to the properties of the decomposition as described 
above. 

These concepts prove to be very efficient for the design of a mobile robot path planning 
system. Using linguistic fuzzy rules as the basic building block of the system a human-
like navigation behavior may be directly hosted to the system to efficiently bootstrap it. 
Learning can then guarantee to fine-tune these rules to result in a path planning system 
of high quality with low design time and effort. 

The Framework 

Below follows a discussion on the various ‘interpretations’ of the basic system building 
blocks. Although these are equivalent in many of their details, they assign different 
meanings to these basic building blocks. 

The Agent-Based Computing Perspective 

Although the concept of an agent is widely used in both artificial intelligence and 
computer science, there exist no strict definition of what an agent really is [4]. 
Nevertheless, it is common that agents possess at least the following properties: 

• autonomy: they are self-sufficient and do not need human or any other support; 

• reactivity: agents have the means to perceive their environment; 

• pro-activeness: agents exhibit a goal-directed behavior and not only feedback 
responses. 

In [5], it is argued that a rational agent possess characteristics as beliefs, situation likings 
and dislikings relatively to its surrounding world as it perceives it. So the aim of a 
rational agent is to try to change the world to meet its likings. A detailed investigation 
of the concept of agents may be found in [4]. Although quite old, [6] still remains one of 
the important sources of information relatively to agents and agent architectures 
(societies). 
Agent are often conceptualized by processes running concurrently under a UNIX-like 
environment. It is our belief that the self-sufficiency of agents is very efficiently 
captured by objects in an Object Oriented Programming context where inheritance, 
overloading, polymorphism, etc. may be beneficially used to provide the agents with all 
the required functionality [7]. 



This paper makes use of agent notions in the sense of independent intentional modules 
working in parallel and responding to their environment as they perceive it. The overall 
system architecture is then defined as a set of competing agents to each one of which an 
activation level is assigned which gives an indication of the relevance of the agent in a 
particular situation. The higher the activation level, the more the agent will influence the 
overall behavior of the system. 

The Adaptive Fuzzy Controller Perspective 

To fully define a fuzzy system, one needs to define four modules, namely the fuzzifier, 
the defuzzifier, the fuzzy rule base, and the fuzzy inference engine (Fig. 1). To extend 
the definition to the case of adaptive fuzzy systems, one should also include an 
adaptation algorithm. A description of fuzzy rule based systems may be found in any 
classical textbook (e.g. [8]). An investigation of adaptive fuzzy systems may be found at 
[2]. 
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Figure 1. The structure of a fuzzy system. 

Under the fuzzy system perspective, the role of the agent is conceptually undertaken by 
the fuzzy rules: a fuzzy rule is both autonomous and reactive. But from a mathematical 
point of view, the output of a fuzzy system is a combination of the so-called fuzzy basis 
functions (FBFs, [1, 2, 9]). The FBFs are indirectly defined during the design of the 
system and strongly depend on the specific choices made for the fuzzifier, defuzzifier, 
and inference rules, as well as the from of the membership functions of the fuzzy sets 
involved. 

So the fuzzy rules themselves as incorporated in the rule base of a fuzzy system do not 
seem to qualify for agents. On the other hand, if we use a different scheme to represent 
fuzzy systems we may find that the basic properties required for agents are satisfied as 
long as we exclude the fuzzifier and defuzzifier modules (Fig. 2). Such a fuzzy system 
may be considered as a fuzzy agent-based architecture. 
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Figure 2. A different representation of a fuzzy system. 

If one decides to include the fuzzifier and the defuzzifier in the analysis then the real 
agents are the FBFs rather than the fuzzy rules. For example, consider the case of a 



fuzzy system with singleton fuzzifier, center average defuzzifier, product-inference rule 
and Gaussian membership functions. It is easy to shown [2] that the input-output 
relation of such a system is of the following form: 
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relations of radial basis function neural networks. 

The Function Approximation Perspective 

One of the most important uses of fuzzy logic systems is as models of nonlinear 
systems. Since fuzzy systems are capable of approximating a wide range of nonlinear 
systems they are qualified as models of general nonlinear systems. 

Kolmogorov ’s theorem roughly states that any nonlinear function may be approximated 
using a linear combination of ‘simpler’ nonlinear functions under certain conditions. 
So, assuming that the agents perform nonlinear mappings, agent-based architectures 
provide the flavor for building universal approximators. 

However, it is crucial to obtain methods and techniques to efficiently select and train an 
adequate set of agents that can guarantee that the system’s responses will be both 
complete for learned patterns (i.e. recalling may be of arbitrary precision), but also 
reasonable for novel inputs (i.e. the system should exhibit good generalization 
performance). 

The Associative Memory Network Perspective 

In [3] the associative memory networks (AMNs) which are basically a class of artificial 
neural networks are investigated. It is shown that fuzzy systems may also be viewed as 
members of the class of AMNs since the basic information processing principles are the 
same and under certain technical conditions the low level algorithms are also identical. 
Other members of the AMN class are the CMAC network, the B-spline network and the 
radial basis function networks. 

One of the main characteristics that all members of the AMN class share is that their 
behavior strongly depends on a set of basis functions which are directly or indirectly 
defined during the design of the system. These basis functions may be considered as the 
mathematical equivalent to the concept of agents as described above. 

The System 

The System Architecture 

Based on the discussion above, one may easily obtain an architecture similar to the one 
depicted in Fig. 3. This architecture includes all the issues discussed. 



Agent 1

Agent 2

Agent m

Behavior
Coordinator

Merging

 
Figure 3. The structure of the proposed agent-based system. 

The various modules of the system are described in the following. 

The Agents 

Agents are used as computational black boxes implementing nonlinear mappings from 
the input to the output domains. An agent may be implemented as algorithmic, neural, 
fuzzy or any kind of computational block as long as it performs a nonlinear mapping. 
The input and the outputs of the agent are denoted by thick lines to represent the fact 
that they may be real numbers as well as fuzzy sets, vectors, or others. Another 
important characteristic of the agents is that they are MISO mappings. There is no loss 
of generality since any MIMO mapping can be reduced to a number of independent 
MISO mappings. 
It is important to note that the system may include agents that do not require any inputs. 
Their role is to capture fixed behaviors that the system needs exhibit. However, there is 
still dependence of the contribution of such agents to the final output through their 
degrees of relevance as assigned by the behavior coordinator. 

The Behavior Coordinator 

This module is responsible for calculating the relevance of each agent in a particular 
situation. Situations are distinguished on the basis of the inputs. All situations when the 
system accepts the same inputs are considered to be identical and are, in fact, 
indistinguishable. Clearly, each relevance is a scalar value that needs to act upon the 
output of the respective agent in a ‘multiplicative’ way so as to affect the agent's firing 
level. Usually such quantities are limited in the [0,1] interval. In many cases, the 
behavior coordinator may possess have some kind of memory in order to recognize 
more efficiently the current situation and make more ‘intelligent’ decisions relatively to 
the agents’ relevance degrees. 

The Merging Module 

All the agents' outputs, after being ‘multiplied’ by their respective relevance, are 
merged in an ‘additive’ way to produce the overall system output. This is the task of the 
merging module. 

The above elements constitute the kernel of the system. When required, as in the case of 
fuzzy agents whose inputs and output are fuzzy sets, additional modules like fuzzifiers 
and defuzzifiers may be added externally to the kernel as shown in Fig. 4. 
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Figure 4. Using additional modules. 

Training the System 

The Back-propagation Algorithm 

One of the most handy representation schemes of a system, an algorithm, or a process is 
that of a feedforward network. A very important reason to use such a representation is 
that there is already a training algorithm available for such networks: the back-
propagation algorithm (BP). Although the BP algorithm has its roots in the field of 
neural networks, its basic concepts may be applied to any feedforward neural network. 

What we need to have available in order to apply the BP algorithm is an expression for 
the error at the network's output layer, usually in the terms of the actual to desired 
output difference. This error is then propagated backwards, towards the input layer. 
Since the BP algorithm is a gradient descent algorithm, it is guaranteed to decrease the 
system's output error and to drive the system to a (local) minimum state. 
Applying the BP algorithm to the network representation of the system is 
straightforward and provides the means to adjust all its model parameters. There are 
many choices for the selection of the system parameters to be adjusted. The first 
candidates for adjustment are, of course, the relevance of the agents. 

Adjustable System Parameters 
Up to now, we made no assumption concerning neither the way the agents (i.e. the rules 
of behavior) are implemented nor the behavior coordinator (i.e. the rules' relevance 
under the specific circumstances). With no loss of generality we may assume that the 
relevance degrees of the agents are implemented using neural networks whose 
generalization abilities prove to offer an important advantage. In most cases, multi layer 
perceptrons (MLPs) with a small number of hidden units are a fair choice. It should be 
pointed out that the problem of training the overall system is not just transferred to the 
one of training these MLPs. Remember that the system's inputs and output may be not 
only numbers but also fuzzy sets while relevance degrees and the MLPs to implement 
them are trained using solely numerals. 

Although the implementation of the agents themselves may take place through various 
techniques, fuzzy logic seems to provide an excellent framework when a priori 
knowledge is to be inserted to the system or when knowledge is to be extracted by the 
system after the learning phase is completed. Fuzzy logic may easily incorporate human 
knowledge in linguistic form, filter the noise from the inputs, compensate for 
environmental uncertainties or sensor failures etc. So, fuzzy agents are usually a very 
efficient choice. 



For the case of fuzzy agents, trainable system parameters are the parameters of the 
membership functions of the antecedent and decedent part of the rules. E.g. for 
Gaussian membership functions, these could be their center point, center value, spread, 
etc. 

Training Equations 

Assume that the error at the output layer of the system is calculated by an expression of 
the form: 

[ ]e f d= −1
2

2( )x  

where: e is the error as measured at the output layer, x is the system's input vector, f(x) 
denotes the actual system output, and d is the desired system output as provided by a 
supervising module. 

A training rule for an adjustable system parameter, say p, will have the following form: 
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where a is a constant stepsize representing the learning rate, and k=0,1,2,.... 

On-line learning 

It is clear that the BP algorithm in the form considered above, is only applicable for off-
line training where all the training samples are available and the derivatives are known. 
If this is not the case, iterative learning algorithms are in order to on-line adjust the 
parameters. 
In the latter case, the actual derivative is replaced by an estimation while the error 
introduced by this approximation may be measured and treated as noise. The efficiency 
of such algorithms is quite satisfactory in most cases. Iterative training algorithms are 
discussed in [3]. 

Automatic Agent Formation 

The performance of a system based on basis functions strongly depends on the choice of 
an adequate set of such functions. Similarly, in the design of an agent-based system, the 
selection of a set of agents is a crucial point. 
There are many choices when training such agent-based systems of the form described 
above. One may choose to select a constant set of agents and perform training by 
adjusting the agents' relevance or one may wish to allow the agents themselves to 
change depending on the specific problem at hand. The former choice permits the user 
to insert an arbitrary set of agents, train the system, and then read back the relevance of 
each agent while the latter allows various conventional, statistical, and other training 
algorithms to be applied in order to refine the agents and to optimally fit the training 
samples. As examples of such training algorithms we may consider the probabilistic 
general regression, the orthogonal least squares, the nearest neighborhood clustering, 
etc. 

So, basically, the following choices are available: 

(i) constant set of agents; 



(ii) set of agents initialized with linguistic knowledge and adjusted during training; 

(iii) automatically created agents in order to optimally fit the numerical training 
data 

In all the above cases, the agents' relevance are subject to adaptation. Moving from 
choice (i) to choice (iii) the approach from ‘completely intuitive’ becomes ‘completely 
mathematical’. It should be noted that agents may also be dynamically created and 
tested on-line by making use of genetic algorithms or other appropriate methods. 

Exhaustive Agent Generation 

Case-specific algorithms for determining the system's agents are also possible. For 
example, consider the case of a system with 2 inputs (x1 and x2) and 1 output (y), 
defined on the universes U, V, and W respectively. Assume that we use fuzzy agents and 
that we define 3 fuzzy variables on U (USMALL, UMEDIUM, and ULARGE), 3 on V 
(VSMALL, VMEDIUM, and VLARGE), and 2 on W (WSMALL and WLARGE). Then there 
exist 18 different possible fuzzy rules: 

IF x1 is USMALL AND x2 is VSMALL THEN y is WSMALL 
IF x1 is USMALL AND x2 is VSMALL THEN y is WLARGE 
. . . 
IF x1 is ULARGE AND x2 is VLARGE THEN y is WLARGE 

A possible training algorithm for such a system could invoke the following steps: 

• exhaustively formulate all the possible fuzzy rules; 

• adjust the system's parameters using the training samples and any of the 
algorithms mentioned above; 

• purge the rules whose relevance degrees achieved the lowest values throughout 
their universes of discourse; 

• re-train the system using only the remaining agents. 

Case Study: A Path Planning System for Mobile Robots 

To highlight some of the main points of the proposed agent-based system perspective, a 
local path planning system for the navigation of an indoor mobile robot in unknown 
environments will be addressed using such a system architecture. Parts of this system 
were presented in [10] and [11]. 

This problem is a very representative case of a category of problems where both 
linguistic and numerical data are available and must both be appropriately blended 
under the same system platform. Commonsense heuristic navigation rules which are 
easy to obtain may be used to efficiently bootstrap the system. These rules may then be 
fine-tuned using numerical training pairs from sensor data and desired robot motions so 
that the system’s behavior is refined. 

Introduction 

The design and implementation of truly autonomous mobile robots, i.e. robots that 
could act in abstractly defined unstructured environments exhibiting robust performance 



and a certain degree of intelligence, have for long been the aim of much research in the 
fields of robotics and artificial intelligence. The research on this problem has, for many 
years, been divided in two major categories, namely global path planning and local path 
planning. 

Global path planning makes use of some available a priori knowledge relative to the 
environment and the objects that consist it, in order to move the robot towards a target 
position. To this end, many methods have been proposed in the technical literature, 
which differ in the philosophy of the solving algorithm, the knowledge representation 
scheme, etc. Some of the most important methods are: 

• the configuration space method [13], developed by Lozano-Perez [14] and other 
researchers [15], 

• the generalized Voronoi diagrams [16] 

• the methods of artificial intelligence [17], and 

• lately a very interesting and promising approach: the artificial magnetic field 
methodology [18]. 

The common problem in all the above global path planning methods is the need of 
possessing full knowledge of the environment and the obstacles. In many cases this 
demand may not be satisfied. That is the reason why local path planning techniques, 
capable to deal with generally unknown environments, have been developed. 

In local path planning the robot makes use of information obtained by various sensors 
in order to successfully move to the target position. Dividing the research work in the 
field of local path planning into categories is not a straightforward task. Considering the 
kind of sensors used, one can find algorithms that make use of cameras [21], simple 
distance measuring sensors [22], etc. 

Quite popular in the field of obstacle avoidance are the hierarchical model [23], and 
lately Saridis’ intelligent control scheme [24], often making use of fuzzy control 
methodology [25]. Although the hierarchical model aims at reducing the large 
complexity of path planning, problems arise due to the strict hierarchy and sequential 
nature of execution. The reason for this is that the complexity introduced by the 
identification tasks and the tasks that require intelligence, is not faced but only 
transferred to higher levels. 

To the end of solving this problem, Brooks [26] combines asynchronous units together, 
to each one of which a different role is assigned. However, these units are not 
independent since they communicate to each other. In a recent work of Boem and Cho 
[27], a combination of two independent units is presented, the one of which has an 
obstacle-avoidance behavior and the other having a goal-seeking behavior. Combination 
of these two units (which do not communicate to each other), is achieved through a 
‘behavior-selector’ which makes use of a bistable switching function to activate each 
unit. 

The complex behavior required to lead a robot towards a target position can be 
reproduced by a combination of simpler independent ‘behavioristic elements’, e.g. 
heuristics of the form ‘move towards the obstacles’, ‘move along the goal direction’, 
‘avoid the obstacles that move to your direction’, etc. Many such antagonistic 
behavioristic elements which are appropriate for different circumstances may be taken 



into account and may be implemented and operate independently. Some of them make 
use of the sensor measurements while others do not. An appropriate combination of 
such elements may lead to a system that exhibits the desired overall behavior. 

This ‘behavior-based’ design technique for both the control of dynamic systems [28] 
and for mobile-robot path planning [29, 30, 31], attracts increasingly more interest and 
an increasing number of related publications appear in the technical literature. 

Problem Statement 
The problem addressed here is local path planning for an indoor mobile robot. In local 
path planning, a robot equipped with sensors is requested to move from a starting 
position (source) to a target position (destination) avoiding any obstacles. 
No assumptions are made relatively to the environment except that it is planar and it is 
considered to be completely unknown and uncertain. Since no knowledge of the 
environment is assumed path optimality cannot be guaranteed. Moreover, the system 
must also be capable of compensating for sensor imprecision and failures. The above 
characteristics, i.e. complexity, uncertainty, and imprecision, qualify fuzzy logic as 
good framework for the local path planning problem. 
We assume that only the direction of the target is known at every step and not its exact 
coordinates. Furthermore, we assume that the robot has N distance sensors placed 
uniformly. This means that each sensor's beam is directed 360°/N degrees from its 
neighboring sensors. Assuming a body attached coordinate frame having its Ox axis 
coinciding with the direction of the target, the first sensor is placed on Ox. This 
technique was also successfully used in [11]. Figure 5 shows the directions of the beams 
in the case of 16 distance sensors (N=16). 

 
Figure 5. The directions of the beams (N=16) 

Structure of the Proposed Model 

Agents based on fuzzy logic are a fair choice for implementing the system’s building 
blocks since: 

• fuzzy logic provides the simplest way to translate heuristic rules to a 
computational algorithm, 

• the system needs to deal with the uncertainty introduced by the sensor 
measurements, 

• the domain of responsibility of each agent is by its nature fuzzy, and 



• efficient algorithms exist to train fuzzy rules-based systems using numerical data 
[2, 19, 20]. 

The proposed model consists of such n agents connected to the sensors (i.e. their 
behavior depends on the specific circumstances) and m agents that do not depend on the 
inputs. Every agent produces an output independently from all the other agents. All 
these partial outputs are appropriately merged by the behavior coordinator. The sensor 
data is also fed to the behavior coordinator which may also have some kind of memory 
in order to recognize more efficiently the present situation. A threshold/selection 
module may be added after the merging module to ensure that a direction leading closer 
to an obstacle than a pre-specified value will certainly be rejected. This threshold value 
depends on the dimensions of the robot and the nature of the specific problem at hand. 
This unit works in a binary way: either a direction is safe or not, since collision is not a 
fuzzy concept! 

Sensors AgentA-1

AgentA-2

AgentA-n

AgentB-1

AgentB-m

AgentB-2

Behavior
Coordinator

Merging

Output  
Figure 6. General structure of the proposed model 

Assuming that the path planning system has k inputs (coming from the sensors) and k 
outputs only one of which is non-zero each time (indicating the direction to be 
followed), we can easily understand that this system has to implement a (very complex) 
function of k inputs and k outputs. Of course, if we additionally desire to control the 
velocity and/or the acceleration of the robot, more outputs would be required. 

Under this agent-based perspective, it is attempted to divide the universe of discourse 
into subsets, and to implement the subsystems that approximate this function in every 
one of these subsets. Some difficulties arise during the determination of the subsets in 
which every subsystem is supposed to operate. This partially results from the fact that 
these subsets may be overlapping. As it will be shown in the next section, we use 
heuristic rules to determine the optimal domains of discourse of every agent. To this 
end, we will implement the behavior coordinator system based on fuzzy logic methods. 

Our aim is to build a system capable of successfully driving the robot from the source to 
the destination and having two additional features: 



• ability to host a priori knowledge in the form of human-like, heuristic, linguistic 
rules; 

• ability to learn and refine its performance through adaptation. 

The system of Fig. 6 possesses both these features and will be used as a base for solving 
the local path planning problem. The overall system architecture used for the path 
planning problem is given in Fig. 7. 
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Figure 7. The overall structure of the path planning system 

The overall system includes a supervisory system (SS). This system is assumed to have 
full knowledge of the environment during the learning phase and will be used as to 
supervise the learning procedure of the system in the sense of providing the necessary 
‘correct outputs’ and error values needed from the back-propagation algorithm. 

We will use the system described above in the following way: the system will accept as 
inputs the sensor measurements, denoted s[i], and produce as outputs evaluations of the 
fitness of each direction of motion, denoted d[j]. The robot will eventually move along 
the direction receiving the highest fitness. 
It is quite reasonable that the possible directions of motion should coincide with the 
directions of the sensor beams since we know nothing about the intermediate directions 
which could be occupied by obstacles. 

The fitness of the i-th direction is expected to be depend the sensor measurements along 
that direction and, in some cases, on the measurements along some neighboring 
directions. For example an obstacle avoiding rule could be expressed as: 

IF s[i] is SMALL THEN d[i] is SMALL 

On the other hand, a rule that forces the robot to enter corridors or rooms while 
searching for the target, could be expressed as: 

IF s[i] is LARGE AND s[i-1] is SMALL AND s[i+1] is SMALL 
THEN d[i] is SMALL 

Such rules are used to determine the fitness of each of the possible directions of motion 
and then the direction with highest fitness will be followed by the robot. 



One question of main importance during the design of a fuzzy inference engine is the 
interpretation of the fuzzy IF-THEN rules. Such a rule is usually interpreted as a fuzzy 
implication, i.e. as a special kind of fuzzy relation defined on the Cartesian product of 
the input and output universes of discourse. But, there are various kinds of formulas 
used for fuzzy implication, e.g. fuzzy conjunction, fuzzy disjunction, generalized modus 
ponens (GMP), etc. 

The choice of the appropriate interpretation of the fuzzy implication strongly affects the 
generalization behavior of the fuzzy rules, i.e. their response to unknown inputs. 
Different interpretations lead to fuzzy systems of different generalization properties, 
each one being appropriate for different problems. On the basis of these properties, 
fuzzy implication interpretations may be compared over certain intuitive criteria [12]. 

In our case, all rules should generalize in such a way that a rule of the type: 

IF x is SMALL THEN y is SMALL 

automatically implies: 

IF x is MEDIUM THEN y is MEDIUM 
IF x is LARGE THEN y is LARGE 
IF x is VERY LARGE THEN y is VERY LARGE 
etc. 

Similarly, the rule: 

IF x is SMALL THEN y is LARGE 
should imply: 

IF x is MEDIUM THEN y is MEDIUM 
IF x is LARGE THEN y is SMALL 
IF x is VERY LARGE THEN y is VERY SMALL 
etc. 

In [12] neural networks are used to guarantee that the desired behavior (expressed in the 
form of appropriate criteria to be satisfied) is exhibited by a fuzzy rule. 

Using a Fixed Set of Agents 

Any of the methods for the rule generation described above may be used for the path 
planning system. Thus, a constant set of agents may be created using linguistic 
knowledge in the form of fuzzy IF-THEN rules or rules may automatically be created 
based on sample input-output data and clustering or other techniques. In all cases, these 
rules may then be refined by a learning algorithm. 

A fixed set of seven fuzzy and one ‘neural’ agent was first used do evaluate the 
performance of the resulting system through simulation. 

The detailed form of the system for the case of a fixed set of agents is pictorially 
represented in Fig. 8. 
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Figure 8. The proposed path-planning system 

The output of the k sensors is fed to the appropriate agents (the input to the fifth and the 
eighth agent is the previous states from the memory), and every agent assigns k 
priorities, one for every direction. The output of every agent is then multiplied by a 
weight that characterizes its degree of relevance and is provided by the behavior 
coordinator. The result is finally brought to the merging subsystem, where the priorities 
supplied by all the agents for a specific direction are multiplied. 

To conclude the algorithm, a step along the direction of maximum priority takes place, 
and the process is continuously repeated until the robot reaches the target position. 

It is important to highlight that all the agents are functioning independently from each 
other and the only duty of the behavior selector is to assign a degree of relevance to 
each one of them. Thus, problem decomposition is taking place, since the original 
problem is divided into eight much simpler sub-problems, with the avoided complexity 
not being transferred to the task of recomposing the overall output from the partial 
outputs. 

In the following operation of every agent will be analyzed along with the heuristic rules 
used to determine its domain of responsibility. 



The first agent is a system that forces the robot to move close to the obstacles. This is 
necessary for two reasons. The first reason is that by getting close to the obstacles, the 
robot increases its resolution since it is easier to recognize small corridors or passes 
among the obstacles which may sometimes be the only way to reach the target position. 
The second reason is that this agent enables the robot to actually enter inside an 
identified corridor. This would have been avoided if no such rule existed since other 
directions would look more appealing. This agent is relevant for handling situations 
where the distances measured by the sensors are similar (i.e. small differences between 
them appear). 

The second agent is a system that forces the robot to move away from the obstacles, i.e. 
it favors the directions along which long distances are measured. This is useful firstly 
because the further the robot moves from the obstacles, the safer the produced trajectory 
is. Moreover, this provides a way to optimize our trajectories. This agent is relevant for 
situations where the obstacles are moving fast or when the distances measured by the 
sensors differ a lot. 

The third agent is a system that forces the robot to move to the direction of the target. 
Its usefulness is obvious since this direction, along with its neighboring ones, should be 
the most favorable. However, this does not always lead to desirable results, since when 
we are close to obstacles it is more important to avoid them than to move towards the 
target. So this agent is relevant for handling cases where there is enough space to move 
along the target direction and/or its neighbor directions. 

The role of the fourth agent is to improve the trajectories with regard to the distance 
covered. Its logic is to avoid the obstacles while moving as close as possible to them. 
These directions can be identified by large differences between the distances measured 
along two successive directions. This agent is almost always relevant except of some 
situations that will be considered later. 

The fifth agent is a subsystem that is activated periodically and checks if any progress 
has been made, i.e. if the current state relatively to the one evaluated during its last 
activation is ‘improved’. If no significant progress is observed, a ‘reaction’ process is 
initiated, the role of which is to suppress the action of all the other agents for a specific 
number of steps, and to lead the robot to the most unknown directions (i.e. directions 
leading to positions it has the least visited before). This agent is very important and has 
a global relevance since moving around with no progress is always undesirable and the 
agents that lead to this situation should be ‘punished’. Punishment has the meaning of 
ignoring, for some time, what these agents suggest. The unknown positions are 
identifiable by the help of an associative memory implemented using neural network 
concepts. 

The sixth agent is a subsystem that helps the robot avoid to continuously change its 
direction of motion. If a direction is chosen, the robot shouldn't easily change it except, 
of course, if another direction appears to be much more promising. This agent is 
relevant for handling situations where the direction leading to the target (and its close 
neighbors,) are forbidden due to the presence of obstacles at small distances. 

The seventh agent is implemented in such a way that it drives the robot away from the 
target! Its presence in the system is necessary since this may be the best thing to do 
under certain circumstances. This is the system's defense against getting trapped into a 
‘local minimum’. Without the presence of such an agent, it would be difficult for the 



robot to achieve this. The circumstances under which this agent is relevant, are the ones 
where the third agent is the least relevant, i.e. the complement of the relevance domain 
of the third agent. 

The eighth agent is responsible for avoiding getting involved into foreseen situations. 
Obviously, these should be avoided since they are examined in the past and a path, if 
existed, would have already been found. This agent also helps the robot to avoid dead-
ends caused by continuously looping around the same positions. To this end, the neural 
associative memory mentioned earlier is used. By adopting neural methods the system 
inherits the very important feature of generalization, i.e. not only the already visited 
situations but also their neighbors will be avoided (to a lesser, of course, degree). 

This set of agents is not, of course, the only possible set one can think of. According to 
the specific problem at hand and the specific demands, we may add or remove agents 
from the system. The system is flexible enough to allow us to directly insert or delete 
agents in a straightforward manner. The way each agent is implemented, can be 
determined according to the role this agent is supposed to play in the system. Fuzzy 
logic provides a good solution when problems related to the accuracy of the sensor 
measurements occur. Neural networks, on the other hand, may enrich the system with 
learning/adaptation capabilities. Finally, simple algorithmic procedures may prove to be 
efficient enough under certain circumstances. 

The behavior coordinator consists of eight different subparts, one for each agent, and 
provides to each one of them the heuristics needed to determine the domain of relevance 
of that agent. 

 (a)  (b)  (c) 
Figure 9. Some representative paths 

Conclusions 

A general design methodology was presented here which is based on the principle of 
decomposition, i.e. reduction of the problem’s solution to the superposition of partial 
solutions. Partial solutions are obtained by local experts called agents which are 
abstractly defined basis elements sharing many common characteristics with other 
widely used basis functions which the agents eventually try to extend. Appropriate tools 
have been presented for both the design and adaptation of agent-based systems. The 
efficiency of such systems was demonstrated through the design of a path planner for 
indoor mobile robots. This system used a few fuzzy and a neural agent and proved 
efficient enough to produce collision-free paths in unknown and uncertain environments 
even for difficult mass-like cases. 
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