
Agent-Like Neurofuzzy Architectures
for Mobile Robot Path Planning

S. N. RAPTIS AND S. G. TZAFESTAS

Intelligent Robotics and Automation Laboratory
National Technical University of Athens

Zografou 15773, Athens, GREECE

Abstract: This paper provides a blueprint of a system architecture that
attempts to decompose a complex behavior, that a control system is
desired to exhibit, to combinations of simple independent sub-systems
each one represented by an appropriate agent and having appropriate
relevance under specific circumstances. The main issues of such an
architecture are discussed and several possible choices available
during its design and implementation are presented. As an illustration
of this approach, the case of a system addressing the local path
planning problem for an indoor mobile robot is presented.

Keywords: fuzzy systems, agents, basis functions, learning, mobile
robots, path planning.

Introduction

The proposed system is a problem-solving architecture based on the principle of
decomposition. A complex problem is decomposed to simpler ones, an appropriate
subsystem is created to meet each sub-problem’s requirements, and then an overall
system output is obtained by appropriately merging the partial outputs of these
subsystems.

In a broader sense a similar idea stands behind all systems that explicitly or implicitly
make use of basis functions and produce outputs as (linear) combinations of them.
Examples of systems that explicitly define and use basis functions are the radial basis
function neural networks (RBFNs) and the B-spline networks. Fuzzy systems implicitly
define and use basis functions known as fuzzy basis functions (FBFs) [1, 2].

This analogy may be extended even to the cases of CMAC, Kawato’s non-recurrent
single-layer neural network, and hierarchical neural networks may be considered to be
members loosely included in the above family, since they formulate some mappings at
the first layers and use these as building blocks to locally approximate a desired overall
function.

All these paradigms share many common properties and can be studied uniformly under
the general class of associative memory networks (AMNs) [3]. Technically, the AMN
class itself is considered to be a subclass of artificial neural networks.

Since there exist good arguments in favor of designing and building artificial systems in
terms of human-like notions, we will take advantage of this throughout the following

discussion. So we may equivalently state the problem as follows: we wish to build a
system that exhibits a certain behavior. To this end we try to decompose this behavior to
a combination of simpler behaviors and design appropriate subsystems to exhibit them
which we may call behavioristic elements. We provide the system with the means to
efficiently mix such elements, i.e. with the ability of behavior coordination. Each
element is independent and self-sufficient. These characteristics make it very similar to
a concept widely used in both artificial intelligence and computer science: the agent.

So, up to now, we see that our subsystems may be regarded from various perspectives,
e.g. as behavioristic elements, as basis functions, or as agents, all of which refer to the
same characteristic: their ability to serve as building blocks for reducing a problem
solution to appropriate combinations of partial solutions to sub-problems.

The analysis that follows is qualitative rather than strictly mathematical and aims at
highlighting some key issues related to the properties of the decomposition as described
above.

These concepts prove to be very efficient for the design of a mobile robot path planning
system. Using linguistic fuzzy rules as the basic building block of the system a human-
like navigation behavior may be directly hosted to the system to efficiently bootstrap it.
Learning can then guarantee to fine-tune these rules to result in a path planning system
of high quality with low design time and effort.

The Framework

Below follows a discussion on the various ‘interpretations’ of the basic system building
blocks. Although these are equivalent in many of their details, they assign different
meanings to these basic building blocks.

The Agent-Based Computing Perspective

Although the concept of an agent is widely used in both artificial intelligence and
computer science, there exist no strict definition of what an agent really is [4].
Nevertheless, it is common that agents possess at least the following properties:

• autonomy: they are self-sufficient and do not need human or any other support;

• reactivity: agents have the means to perceive their environment;

• pro-activeness: agents exhibit a goal-directed behavior and not only feedback
responses.

In [5], it is argued that a rational agent possess characteristics as beliefs, situation likings
and dislikings relatively to its surrounding world as it perceives it. So the aim of a
rational agent is to try to change the world to meet its likings. A detailed investigation
of the concept of agents may be found in [4]. Although quite old, [6] still remains one of
the important sources of information relatively to agents and agent architectures
(societies).
Agent are often conceptualized by processes running concurrently under a UNIX-like
environment. It is our belief that the self-sufficiency of agents is very efficiently
captured by objects in an Object Oriented Programming context where inheritance,
overloading, polymorphism, etc. may be beneficially used to provide the agents with all
the required functionality [7].

This paper makes use of agent notions in the sense of independent intentional modules
working in parallel and responding to their environment as they perceive it. The overall
system architecture is then defined as a set of competing agents to each one of which an
activation level is assigned which gives an indication of the relevance of the agent in a
particular situation. The higher the activation level, the more the agent will influence the
overall behavior of the system.

The Adaptive Fuzzy Controller Perspective

To fully define a fuzzy system, one needs to define four modules, namely the fuzzifier,
the defuzzifier, the fuzzy rule base, and the fuzzy inference engine (Fig. 1). To extend
the definition to the case of adaptive fuzzy systems, one should also include an
adaptation algorithm. A description of fuzzy rule based systems may be found in any
classical textbook (e.g. [8]). An investigation of adaptive fuzzy systems may be found at
[2].

x U∈ ⊂ℜn ∈ ⊂ℜy V
Fuzzifier Defuzzifier

Fuzzy Inference
EngineFuzzy sets in U Fuzzy sets in V

Fuzzy Rule
Base

Figure 1. The structure of a fuzzy system.

Under the fuzzy system perspective, the role of the agent is conceptually undertaken by
the fuzzy rules: a fuzzy rule is both autonomous and reactive. But from a mathematical
point of view, the output of a fuzzy system is a combination of the so-called fuzzy basis
functions (FBFs, [1, 2, 9]). The FBFs are indirectly defined during the design of the
system and strongly depend on the specific choices made for the fuzzifier, defuzzifier,
and inference rules, as well as the from of the membership functions of the fuzzy sets
involved.

So the fuzzy rules themselves as incorporated in the rule base of a fuzzy system do not
seem to qualify for agents. On the other hand, if we use a different scheme to represent
fuzzy systems we may find that the basic properties required for agents are satisfied as
long as we exclude the fuzzifier and defuzzifier modules (Fig. 2). Such a fuzzy system
may be considered as a fuzzy agent-based architecture.

DefuzzifierMergingFuzzifier Rule 2

Rule 1

Rule m

Figure 2. A different representation of a fuzzy system.

If one decides to include the fuzzifier and the defuzzifier in the analysis then the real
agents are the FBFs rather than the fuzzy rules. For example, consider the case of a

fuzzy system with singleton fuzzifier, center average defuzzifier, product-inference rule
and Gaussian membership functions. It is easy to shown [2] that the input-output
relation of such a system is of the following form:

f x
y R

R

l
i
l

l
M

i
l

l
M() = =

=

∑
∑

1

1

 where R a x x
σ

i
l

i
l i i

l

i
li

n= −
−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=∏ exp
2

1

So, the output is then expressed in terms of a linear combination of the fuzzy basis
functions: R Ri

l
i
l

l
M
=∑ 1 . Note that equations very similar to these give input-output

relations of radial basis function neural networks.

The Function Approximation Perspective

One of the most important uses of fuzzy logic systems is as models of nonlinear
systems. Since fuzzy systems are capable of approximating a wide range of nonlinear
systems they are qualified as models of general nonlinear systems.

Kolmogorov ’s theorem roughly states that any nonlinear function may be approximated
using a linear combination of ‘simpler’ nonlinear functions under certain conditions.
So, assuming that the agents perform nonlinear mappings, agent-based architectures
provide the flavor for building universal approximators.

However, it is crucial to obtain methods and techniques to efficiently select and train an
adequate set of agents that can guarantee that the system’s responses will be both
complete for learned patterns (i.e. recalling may be of arbitrary precision), but also
reasonable for novel inputs (i.e. the system should exhibit good generalization
performance).

The Associative Memory Network Perspective

In [3] the associative memory networks (AMNs) which are basically a class of artificial
neural networks are investigated. It is shown that fuzzy systems may also be viewed as
members of the class of AMNs since the basic information processing principles are the
same and under certain technical conditions the low level algorithms are also identical.
Other members of the AMN class are the CMAC network, the B-spline network and the
radial basis function networks.

One of the main characteristics that all members of the AMN class share is that their
behavior strongly depends on a set of basis functions which are directly or indirectly
defined during the design of the system. These basis functions may be considered as the
mathematical equivalent to the concept of agents as described above.

The System

The System Architecture

Based on the discussion above, one may easily obtain an architecture similar to the one
depicted in Fig. 3. This architecture includes all the issues discussed.

Agent 1

Agent 2

Agent m

Behavior
Coordinator

Merging

Figure 3. The structure of the proposed agent-based system.

The various modules of the system are described in the following.

The Agents

Agents are used as computational black boxes implementing nonlinear mappings from
the input to the output domains. An agent may be implemented as algorithmic, neural,
fuzzy or any kind of computational block as long as it performs a nonlinear mapping.
The input and the outputs of the agent are denoted by thick lines to represent the fact
that they may be real numbers as well as fuzzy sets, vectors, or others. Another
important characteristic of the agents is that they are MISO mappings. There is no loss
of generality since any MIMO mapping can be reduced to a number of independent
MISO mappings.
It is important to note that the system may include agents that do not require any inputs.
Their role is to capture fixed behaviors that the system needs exhibit. However, there is
still dependence of the contribution of such agents to the final output through their
degrees of relevance as assigned by the behavior coordinator.

The Behavior Coordinator

This module is responsible for calculating the relevance of each agent in a particular
situation. Situations are distinguished on the basis of the inputs. All situations when the
system accepts the same inputs are considered to be identical and are, in fact,
indistinguishable. Clearly, each relevance is a scalar value that needs to act upon the
output of the respective agent in a ‘multiplicative’ way so as to affect the agent's firing
level. Usually such quantities are limited in the [0,1] interval. In many cases, the
behavior coordinator may possess have some kind of memory in order to recognize
more efficiently the current situation and make more ‘intelligent’ decisions relatively to
the agents’ relevance degrees.

The Merging Module

All the agents' outputs, after being ‘multiplied’ by their respective relevance, are
merged in an ‘additive’ way to produce the overall system output. This is the task of the
merging module.

The above elements constitute the kernel of the system. When required, as in the case of
fuzzy agents whose inputs and output are fuzzy sets, additional modules like fuzzifiers
and defuzzifiers may be added externally to the kernel as shown in Fig. 4.

Fuzzifier

Fuzzy
Inputs

Crisp
Inputs

Kernel

Defuzzifier

Fuzzy
Outputs

Outputs
Crisp

Figure 4. Using additional modules.

Training the System

The Back-propagation Algorithm

One of the most handy representation schemes of a system, an algorithm, or a process is
that of a feedforward network. A very important reason to use such a representation is
that there is already a training algorithm available for such networks: the back-
propagation algorithm (BP). Although the BP algorithm has its roots in the field of
neural networks, its basic concepts may be applied to any feedforward neural network.

What we need to have available in order to apply the BP algorithm is an expression for
the error at the network's output layer, usually in the terms of the actual to desired
output difference. This error is then propagated backwards, towards the input layer.
Since the BP algorithm is a gradient descent algorithm, it is guaranteed to decrease the
system's output error and to drive the system to a (local) minimum state.
Applying the BP algorithm to the network representation of the system is
straightforward and provides the means to adjust all its model parameters. There are
many choices for the selection of the system parameters to be adjusted. The first
candidates for adjustment are, of course, the relevance of the agents.

Adjustable System Parameters
Up to now, we made no assumption concerning neither the way the agents (i.e. the rules
of behavior) are implemented nor the behavior coordinator (i.e. the rules' relevance
under the specific circumstances). With no loss of generality we may assume that the
relevance degrees of the agents are implemented using neural networks whose
generalization abilities prove to offer an important advantage. In most cases, multi layer
perceptrons (MLPs) with a small number of hidden units are a fair choice. It should be
pointed out that the problem of training the overall system is not just transferred to the
one of training these MLPs. Remember that the system's inputs and output may be not
only numbers but also fuzzy sets while relevance degrees and the MLPs to implement
them are trained using solely numerals.

Although the implementation of the agents themselves may take place through various
techniques, fuzzy logic seems to provide an excellent framework when a priori
knowledge is to be inserted to the system or when knowledge is to be extracted by the
system after the learning phase is completed. Fuzzy logic may easily incorporate human
knowledge in linguistic form, filter the noise from the inputs, compensate for
environmental uncertainties or sensor failures etc. So, fuzzy agents are usually a very
efficient choice.

For the case of fuzzy agents, trainable system parameters are the parameters of the
membership functions of the antecedent and decedent part of the rules. E.g. for
Gaussian membership functions, these could be their center point, center value, spread,
etc.

Training Equations

Assume that the error at the output layer of the system is calculated by an expression of
the form:

[]e f d= −1
2

2()x

where: e is the error as measured at the output layer, x is the system's input vector, f(x)
denotes the actual system output, and d is the desired system output as provided by a
supervising module.

A training rule for an adjustable system parameter, say p, will have the following form:

p k p k a e
p k

() ()+ = −1 ∂
∂ , k=0,1,2,...

where a is a constant stepsize representing the learning rate, and k=0,1,2,....

On-line learning

It is clear that the BP algorithm in the form considered above, is only applicable for off-
line training where all the training samples are available and the derivatives are known.
If this is not the case, iterative learning algorithms are in order to on-line adjust the
parameters.
In the latter case, the actual derivative is replaced by an estimation while the error
introduced by this approximation may be measured and treated as noise. The efficiency
of such algorithms is quite satisfactory in most cases. Iterative training algorithms are
discussed in [3].

Automatic Agent Formation

The performance of a system based on basis functions strongly depends on the choice of
an adequate set of such functions. Similarly, in the design of an agent-based system, the
selection of a set of agents is a crucial point.
There are many choices when training such agent-based systems of the form described
above. One may choose to select a constant set of agents and perform training by
adjusting the agents' relevance or one may wish to allow the agents themselves to
change depending on the specific problem at hand. The former choice permits the user
to insert an arbitrary set of agents, train the system, and then read back the relevance of
each agent while the latter allows various conventional, statistical, and other training
algorithms to be applied in order to refine the agents and to optimally fit the training
samples. As examples of such training algorithms we may consider the probabilistic
general regression, the orthogonal least squares, the nearest neighborhood clustering,
etc.

So, basically, the following choices are available:

(i) constant set of agents;

(ii) set of agents initialized with linguistic knowledge and adjusted during training;

(iii) automatically created agents in order to optimally fit the numerical training
data

In all the above cases, the agents' relevance are subject to adaptation. Moving from
choice (i) to choice (iii) the approach from ‘completely intuitive’ becomes ‘completely
mathematical’. It should be noted that agents may also be dynamically created and
tested on-line by making use of genetic algorithms or other appropriate methods.

Exhaustive Agent Generation

Case-specific algorithms for determining the system's agents are also possible. For
example, consider the case of a system with 2 inputs (x1 and x2) and 1 output (y),
defined on the universes U, V, and W respectively. Assume that we use fuzzy agents and
that we define 3 fuzzy variables on U (USMALL, UMEDIUM, and ULARGE), 3 on V
(VSMALL, VMEDIUM, and VLARGE), and 2 on W (WSMALL and WLARGE). Then there
exist 18 different possible fuzzy rules:

IF x1 is USMALL AND x2 is VSMALL THEN y is WSMALL
IF x1 is USMALL AND x2 is VSMALL THEN y is WLARGE
. . .
IF x1 is ULARGE AND x2 is VLARGE THEN y is WLARGE

A possible training algorithm for such a system could invoke the following steps:

• exhaustively formulate all the possible fuzzy rules;

• adjust the system's parameters using the training samples and any of the
algorithms mentioned above;

• purge the rules whose relevance degrees achieved the lowest values throughout
their universes of discourse;

• re-train the system using only the remaining agents.

Case Study: A Path Planning System for Mobile Robots

To highlight some of the main points of the proposed agent-based system perspective, a
local path planning system for the navigation of an indoor mobile robot in unknown
environments will be addressed using such a system architecture. Parts of this system
were presented in [10] and [11].

This problem is a very representative case of a category of problems where both
linguistic and numerical data are available and must both be appropriately blended
under the same system platform. Commonsense heuristic navigation rules which are
easy to obtain may be used to efficiently bootstrap the system. These rules may then be
fine-tuned using numerical training pairs from sensor data and desired robot motions so
that the system’s behavior is refined.

Introduction

The design and implementation of truly autonomous mobile robots, i.e. robots that
could act in abstractly defined unstructured environments exhibiting robust performance

and a certain degree of intelligence, have for long been the aim of much research in the
fields of robotics and artificial intelligence. The research on this problem has, for many
years, been divided in two major categories, namely global path planning and local path
planning.

Global path planning makes use of some available a priori knowledge relative to the
environment and the objects that consist it, in order to move the robot towards a target
position. To this end, many methods have been proposed in the technical literature,
which differ in the philosophy of the solving algorithm, the knowledge representation
scheme, etc. Some of the most important methods are:

• the configuration space method [13], developed by Lozano-Perez [14] and other
researchers [15],

• the generalized Voronoi diagrams [16]

• the methods of artificial intelligence [17], and

• lately a very interesting and promising approach: the artificial magnetic field
methodology [18].

The common problem in all the above global path planning methods is the need of
possessing full knowledge of the environment and the obstacles. In many cases this
demand may not be satisfied. That is the reason why local path planning techniques,
capable to deal with generally unknown environments, have been developed.

In local path planning the robot makes use of information obtained by various sensors
in order to successfully move to the target position. Dividing the research work in the
field of local path planning into categories is not a straightforward task. Considering the
kind of sensors used, one can find algorithms that make use of cameras [21], simple
distance measuring sensors [22], etc.

Quite popular in the field of obstacle avoidance are the hierarchical model [23], and
lately Saridis’ intelligent control scheme [24], often making use of fuzzy control
methodology [25]. Although the hierarchical model aims at reducing the large
complexity of path planning, problems arise due to the strict hierarchy and sequential
nature of execution. The reason for this is that the complexity introduced by the
identification tasks and the tasks that require intelligence, is not faced but only
transferred to higher levels.

To the end of solving this problem, Brooks [26] combines asynchronous units together,
to each one of which a different role is assigned. However, these units are not
independent since they communicate to each other. In a recent work of Boem and Cho
[27], a combination of two independent units is presented, the one of which has an
obstacle-avoidance behavior and the other having a goal-seeking behavior. Combination
of these two units (which do not communicate to each other), is achieved through a
‘behavior-selector’ which makes use of a bistable switching function to activate each
unit.

The complex behavior required to lead a robot towards a target position can be
reproduced by a combination of simpler independent ‘behavioristic elements’, e.g.
heuristics of the form ‘move towards the obstacles’, ‘move along the goal direction’,
‘avoid the obstacles that move to your direction’, etc. Many such antagonistic
behavioristic elements which are appropriate for different circumstances may be taken

into account and may be implemented and operate independently. Some of them make
use of the sensor measurements while others do not. An appropriate combination of
such elements may lead to a system that exhibits the desired overall behavior.

This ‘behavior-based’ design technique for both the control of dynamic systems [28]
and for mobile-robot path planning [29, 30, 31], attracts increasingly more interest and
an increasing number of related publications appear in the technical literature.

Problem Statement
The problem addressed here is local path planning for an indoor mobile robot. In local
path planning, a robot equipped with sensors is requested to move from a starting
position (source) to a target position (destination) avoiding any obstacles.
No assumptions are made relatively to the environment except that it is planar and it is
considered to be completely unknown and uncertain. Since no knowledge of the
environment is assumed path optimality cannot be guaranteed. Moreover, the system
must also be capable of compensating for sensor imprecision and failures. The above
characteristics, i.e. complexity, uncertainty, and imprecision, qualify fuzzy logic as
good framework for the local path planning problem.
We assume that only the direction of the target is known at every step and not its exact
coordinates. Furthermore, we assume that the robot has N distance sensors placed
uniformly. This means that each sensor's beam is directed 360°/N degrees from its
neighboring sensors. Assuming a body attached coordinate frame having its Ox axis
coinciding with the direction of the target, the first sensor is placed on Ox. This
technique was also successfully used in [11]. Figure 5 shows the directions of the beams
in the case of 16 distance sensors (N=16).

Figure 5. The directions of the beams (N=16)

Structure of the Proposed Model

Agents based on fuzzy logic are a fair choice for implementing the system’s building
blocks since:

• fuzzy logic provides the simplest way to translate heuristic rules to a
computational algorithm,

• the system needs to deal with the uncertainty introduced by the sensor
measurements,

• the domain of responsibility of each agent is by its nature fuzzy, and

• efficient algorithms exist to train fuzzy rules-based systems using numerical data
[2, 19, 20].

The proposed model consists of such n agents connected to the sensors (i.e. their
behavior depends on the specific circumstances) and m agents that do not depend on the
inputs. Every agent produces an output independently from all the other agents. All
these partial outputs are appropriately merged by the behavior coordinator. The sensor
data is also fed to the behavior coordinator which may also have some kind of memory
in order to recognize more efficiently the present situation. A threshold/selection
module may be added after the merging module to ensure that a direction leading closer
to an obstacle than a pre-specified value will certainly be rejected. This threshold value
depends on the dimensions of the robot and the nature of the specific problem at hand.
This unit works in a binary way: either a direction is safe or not, since collision is not a
fuzzy concept!

Sensors AgentA-1

AgentA-2

AgentA-n

AgentB-1

AgentB-m

AgentB-2

Behavior
Coordinator

Merging

Output
Figure 6. General structure of the proposed model

Assuming that the path planning system has k inputs (coming from the sensors) and k
outputs only one of which is non-zero each time (indicating the direction to be
followed), we can easily understand that this system has to implement a (very complex)
function of k inputs and k outputs. Of course, if we additionally desire to control the
velocity and/or the acceleration of the robot, more outputs would be required.

Under this agent-based perspective, it is attempted to divide the universe of discourse
into subsets, and to implement the subsystems that approximate this function in every
one of these subsets. Some difficulties arise during the determination of the subsets in
which every subsystem is supposed to operate. This partially results from the fact that
these subsets may be overlapping. As it will be shown in the next section, we use
heuristic rules to determine the optimal domains of discourse of every agent. To this
end, we will implement the behavior coordinator system based on fuzzy logic methods.

Our aim is to build a system capable of successfully driving the robot from the source to
the destination and having two additional features:

• ability to host a priori knowledge in the form of human-like, heuristic, linguistic
rules;

• ability to learn and refine its performance through adaptation.

The system of Fig. 6 possesses both these features and will be used as a base for solving
the local path planning problem. The overall system architecture used for the path
planning problem is given in Fig. 7.

Normalization

Supervisory
System

Environment
Generator

Agent-Based
System

Simulated Environment

Figure 7. The overall structure of the path planning system

The overall system includes a supervisory system (SS). This system is assumed to have
full knowledge of the environment during the learning phase and will be used as to
supervise the learning procedure of the system in the sense of providing the necessary
‘correct outputs’ and error values needed from the back-propagation algorithm.

We will use the system described above in the following way: the system will accept as
inputs the sensor measurements, denoted s[i], and produce as outputs evaluations of the
fitness of each direction of motion, denoted d[j]. The robot will eventually move along
the direction receiving the highest fitness.
It is quite reasonable that the possible directions of motion should coincide with the
directions of the sensor beams since we know nothing about the intermediate directions
which could be occupied by obstacles.

The fitness of the i-th direction is expected to be depend the sensor measurements along
that direction and, in some cases, on the measurements along some neighboring
directions. For example an obstacle avoiding rule could be expressed as:

IF s[i] is SMALL THEN d[i] is SMALL

On the other hand, a rule that forces the robot to enter corridors or rooms while
searching for the target, could be expressed as:

IF s[i] is LARGE AND s[i-1] is SMALL AND s[i+1] is SMALL
THEN d[i] is SMALL

Such rules are used to determine the fitness of each of the possible directions of motion
and then the direction with highest fitness will be followed by the robot.

One question of main importance during the design of a fuzzy inference engine is the
interpretation of the fuzzy IF-THEN rules. Such a rule is usually interpreted as a fuzzy
implication, i.e. as a special kind of fuzzy relation defined on the Cartesian product of
the input and output universes of discourse. But, there are various kinds of formulas
used for fuzzy implication, e.g. fuzzy conjunction, fuzzy disjunction, generalized modus
ponens (GMP), etc.

The choice of the appropriate interpretation of the fuzzy implication strongly affects the
generalization behavior of the fuzzy rules, i.e. their response to unknown inputs.
Different interpretations lead to fuzzy systems of different generalization properties,
each one being appropriate for different problems. On the basis of these properties,
fuzzy implication interpretations may be compared over certain intuitive criteria [12].

In our case, all rules should generalize in such a way that a rule of the type:

IF x is SMALL THEN y is SMALL

automatically implies:

IF x is MEDIUM THEN y is MEDIUM
IF x is LARGE THEN y is LARGE
IF x is VERY LARGE THEN y is VERY LARGE
etc.

Similarly, the rule:

IF x is SMALL THEN y is LARGE
should imply:

IF x is MEDIUM THEN y is MEDIUM
IF x is LARGE THEN y is SMALL
IF x is VERY LARGE THEN y is VERY SMALL
etc.

In [12] neural networks are used to guarantee that the desired behavior (expressed in the
form of appropriate criteria to be satisfied) is exhibited by a fuzzy rule.

Using a Fixed Set of Agents

Any of the methods for the rule generation described above may be used for the path
planning system. Thus, a constant set of agents may be created using linguistic
knowledge in the form of fuzzy IF-THEN rules or rules may automatically be created
based on sample input-output data and clustering or other techniques. In all cases, these
rules may then be refined by a learning algorithm.

A fixed set of seven fuzzy and one ‘neural’ agent was first used do evaluate the
performance of the resulting system through simulation.

The detailed form of the system for the case of a fixed set of agents is pictorially
represented in Fig. 8.

Memory Behaviour
Coordinator

Agent1

Agent2

Agent3

Agent4

Agent5

Agent6

Agent7

Agent8

Sensors

Approach
Obstacles

Avoid
Obstacles

Move towards
the target

Move close
and avoid

Punish all the
other agents

Avoid changing the
direction of motion

Move away from
the target

Avoid foreseen
situations

Output

MergingThreshold/Selection

MergingMerging

k

k

k

k

k

k

k

k

k

k

k

k

k

k

Figure 8. The proposed path-planning system

The output of the k sensors is fed to the appropriate agents (the input to the fifth and the
eighth agent is the previous states from the memory), and every agent assigns k
priorities, one for every direction. The output of every agent is then multiplied by a
weight that characterizes its degree of relevance and is provided by the behavior
coordinator. The result is finally brought to the merging subsystem, where the priorities
supplied by all the agents for a specific direction are multiplied.

To conclude the algorithm, a step along the direction of maximum priority takes place,
and the process is continuously repeated until the robot reaches the target position.

It is important to highlight that all the agents are functioning independently from each
other and the only duty of the behavior selector is to assign a degree of relevance to
each one of them. Thus, problem decomposition is taking place, since the original
problem is divided into eight much simpler sub-problems, with the avoided complexity
not being transferred to the task of recomposing the overall output from the partial
outputs.

In the following operation of every agent will be analyzed along with the heuristic rules
used to determine its domain of responsibility.

The first agent is a system that forces the robot to move close to the obstacles. This is
necessary for two reasons. The first reason is that by getting close to the obstacles, the
robot increases its resolution since it is easier to recognize small corridors or passes
among the obstacles which may sometimes be the only way to reach the target position.
The second reason is that this agent enables the robot to actually enter inside an
identified corridor. This would have been avoided if no such rule existed since other
directions would look more appealing. This agent is relevant for handling situations
where the distances measured by the sensors are similar (i.e. small differences between
them appear).

The second agent is a system that forces the robot to move away from the obstacles, i.e.
it favors the directions along which long distances are measured. This is useful firstly
because the further the robot moves from the obstacles, the safer the produced trajectory
is. Moreover, this provides a way to optimize our trajectories. This agent is relevant for
situations where the obstacles are moving fast or when the distances measured by the
sensors differ a lot.

The third agent is a system that forces the robot to move to the direction of the target.
Its usefulness is obvious since this direction, along with its neighboring ones, should be
the most favorable. However, this does not always lead to desirable results, since when
we are close to obstacles it is more important to avoid them than to move towards the
target. So this agent is relevant for handling cases where there is enough space to move
along the target direction and/or its neighbor directions.

The role of the fourth agent is to improve the trajectories with regard to the distance
covered. Its logic is to avoid the obstacles while moving as close as possible to them.
These directions can be identified by large differences between the distances measured
along two successive directions. This agent is almost always relevant except of some
situations that will be considered later.

The fifth agent is a subsystem that is activated periodically and checks if any progress
has been made, i.e. if the current state relatively to the one evaluated during its last
activation is ‘improved’. If no significant progress is observed, a ‘reaction’ process is
initiated, the role of which is to suppress the action of all the other agents for a specific
number of steps, and to lead the robot to the most unknown directions (i.e. directions
leading to positions it has the least visited before). This agent is very important and has
a global relevance since moving around with no progress is always undesirable and the
agents that lead to this situation should be ‘punished’. Punishment has the meaning of
ignoring, for some time, what these agents suggest. The unknown positions are
identifiable by the help of an associative memory implemented using neural network
concepts.

The sixth agent is a subsystem that helps the robot avoid to continuously change its
direction of motion. If a direction is chosen, the robot shouldn't easily change it except,
of course, if another direction appears to be much more promising. This agent is
relevant for handling situations where the direction leading to the target (and its close
neighbors,) are forbidden due to the presence of obstacles at small distances.

The seventh agent is implemented in such a way that it drives the robot away from the
target! Its presence in the system is necessary since this may be the best thing to do
under certain circumstances. This is the system's defense against getting trapped into a
‘local minimum’. Without the presence of such an agent, it would be difficult for the

robot to achieve this. The circumstances under which this agent is relevant, are the ones
where the third agent is the least relevant, i.e. the complement of the relevance domain
of the third agent.

The eighth agent is responsible for avoiding getting involved into foreseen situations.
Obviously, these should be avoided since they are examined in the past and a path, if
existed, would have already been found. This agent also helps the robot to avoid dead-
ends caused by continuously looping around the same positions. To this end, the neural
associative memory mentioned earlier is used. By adopting neural methods the system
inherits the very important feature of generalization, i.e. not only the already visited
situations but also their neighbors will be avoided (to a lesser, of course, degree).

This set of agents is not, of course, the only possible set one can think of. According to
the specific problem at hand and the specific demands, we may add or remove agents
from the system. The system is flexible enough to allow us to directly insert or delete
agents in a straightforward manner. The way each agent is implemented, can be
determined according to the role this agent is supposed to play in the system. Fuzzy
logic provides a good solution when problems related to the accuracy of the sensor
measurements occur. Neural networks, on the other hand, may enrich the system with
learning/adaptation capabilities. Finally, simple algorithmic procedures may prove to be
efficient enough under certain circumstances.

The behavior coordinator consists of eight different subparts, one for each agent, and
provides to each one of them the heuristics needed to determine the domain of relevance
of that agent.

 (a) (b) (c)
Figure 9. Some representative paths

Conclusions

A general design methodology was presented here which is based on the principle of
decomposition, i.e. reduction of the problem’s solution to the superposition of partial
solutions. Partial solutions are obtained by local experts called agents which are
abstractly defined basis elements sharing many common characteristics with other
widely used basis functions which the agents eventually try to extend. Appropriate tools
have been presented for both the design and adaptation of agent-based systems. The
efficiency of such systems was demonstrated through the design of a path planner for
indoor mobile robots. This system used a few fuzzy and a neural agent and proved
efficient enough to produce collision-free paths in unknown and uncertain environments
even for difficult mass-like cases.

References

[1] L. -X. Wang and J. M. Mendel, “Fuzzy Basis Function, Universal Approximation,
and Orthogonal Least Squares Learning,” IEEE Trans. Neural Networks, Vol. 3,
No. 5, pp. 807-814 (1992)

[2] L. -X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis,
Prentice Hall, Englewood Cliffs, N. J. (1994)

[3] M. Brown and C. Harris, Neurofuzzy Adaptive Modeling and Control, Prentice
Hall, UK (1994)

[4] M. Wooldridge and N. R. Jennings, “Intelligent Agents: Theory and Practice,”
The Knowledge Engineering Review, Vol. 10:2, pp. 115-152 (1995)

[5] J. L. Pollock, Cognitive Carpentry: A Blueprint for How to Build a Person, The
MIT Press, London (1995)

[6] M. L. Minsky, Society of Mind, Simon & Schuster, New York (1986)

[7] G. Agha, P. Wegner, and A. Yonezawa (eds.), Research Directions in Concurrent
Object-Oriented Programming, The MIT Press (1993)

[8] M. Jamshidi, N. Vadiee, and T. Ross, Fuzzy Logic and Control: Software and
Hardware Applications, Prentice Hall, Englewood Cliffs, N. J. (1993)

[9] H. M. Kim and J. M. Mendel, “Fuzzy Basis Functions: Comparison with Other
Basis Functions,” IEEE Trans. Fuzzy Systems, Vol. 3, No. 2 (1995)

[10] S. Raptis and S. Tzafestas, “A Fuzzy Controller with Self-Formatting Rules
Supervised by an Expert System for Robot Path Planning in Unknown
Environments,” Proc. WAC’96: The First Intl. Symp. on Intelligent Automation
and Control, Oct. 6-8, Milan, Italy (1996)

[11] G. Stamou, S. Raptis, and S. Tzafestas, “An Agent-Like Architecture for
Autonomous Robot Motion in Unknown Environment,” The First ECPD Intl.
Conf. on Advanced Robotics and Industrial Automation, Sept. 6-8, Athens, Greece
(1995)

[12] S. Tzafestas, S. Raptis, and G. Stamou, “A Flexible Neurofuzzy Cell Structure for
General Fuzzy Inference,” Mathematics and Computers in Simulation, Vol. 41,
Nos. 3-4, pp. 219-233 (1994)

[13] T. Lozano-Perez and M. A. Wesley, “An Algorithm for Planning Collision-Free
Paths Among Polyhedral Obstacles,” Comm. ACM, Vol. 22, No. 10 (1979)

[14] T. Lozano-Perez, “Spatial Planning: A Spatial Configuration Space Approach,”
IEEE Trans. Computers, Vol. 32, No. 2 (1983)

[15] R. A. Brooks and T. Lozano-Perez, “A Subdivision Algorithm in Configuration
Space for Findpath with Rotation,” IEEE Trans. Systems, Man, and Cybernetics,
Vol. 15, No. 2 (1985)

[16] O. Takahashi and R. J. Schilling, “Motion Planning in a Plane Using Generalized
Voronoi Diagrams,” IEEE Trans. Robotics and Automation, Vol. 5, No. 2 (1989)

[17] S. Kambhampati and L. S. Davis, “Multiresolution Path Planning for Mobile
Robots,” IEEE Journal of Robotics and Automation, Vol. 2, No. 3 (1986)

[18] C. T. Lin and C. S. G. Lee, “A Multi-Valued Boltzmann Machine,” IEEE Trans.
Systems, Man, and Cybernetics, Vol. 25, No. 4 (1995)

[19] H. R. Berenji and P. Khedhar, “Learning and Tuning Fuzzy Logic Controllers
Through Reinforcements,” IEEE Trans. Neural Networks, Vol. 3, No. 5 (1992)

[20] C. T. Lin and C. S. G. Lee, “Reinforcement Structure/Parameter Learning for
Neural-Network-Based Fuzzy Logic Control Systems,” IEEE Trans. Fuzzy
Systems, Vol. 2, No. 1 (1994)

[21] W. -H. Tsai and Y. -C. Chen, “Adaptive Navigation of Automated Vehicles by
Image Analysis Techniques,” IEEE Trans. Systems, Man, and Cybernetics, Vol.
16, No. 5, pp. 730-740 (1986)

[22] R. Jarvis, “Distance Transform Based Path Planning for Robot Navigation,” in
Recent Trends in Mobile Robots (Zheng, Y. F., ed.), World Scientific.

[23] K. Fujimura and H. Samet, “A Hierarchical Strategy for Path Planning Among
Moving Obstacles,” IEEE Trans. Robotics, Vol. 5, No. 1 (1989)

[24] G. N. Saridis, “Intelligent Robotic Control,” IEEE Trans. Automatic Control, Vol.
28, No. 5 (1983)

[25] T. Sawaragi, K. Itoh, O. Katai, and S. Iwai, “Integration of Symbolic Path-
Planning and Fuzzy Control for Intelligent Mobile Robot,” in Fuzzy Logic (R.
Lowen and M. Roubens, eds.), Kluwer (1993)

[26] R. A. Brooks, “A Robust Layered Control System For A Mobile Robot,” IEEE
Journal of Robotics and Automation, Vol. 2, No. 1 (1986)

[27] H. R. Beom and H. S. Cho, “A Sensor-Based Navigation for a Mobile Robot
Using Fuzzy Logic and Reinforcement Learning,” IEEE Trans. Systems, Man, and
Cybernetics, Vol. 25, No. 3 (1995)

[28] H. Berenji, Y. -Y. Chen, C. -C. Lee, J. -S. Jang, and S. Murugesan, “A
Hierarchical Approach to Designing Approximate Reasoning-Based Controllers
for Dynamical Physical Systems,” in Proc. 6th Conf. on Uncertainty in Artificial
Intelligence, Cambridge, MA (1990)

[29] A. Saffiotti, E. H. Ruspini, and K. Konolige, “Using Fuzzy Logic for Mobile
Robot Control,” in International Handbook of Fuzzy Sets and Possibility Theory,
D. Dubois, H. Prade, and H. J. Ziemmerman (eds.), Kluwer, forthcoming in 1997.

[30] M. Colombetti, M. Dorigo, and G. Borghi, “Behavior Analysis and Training ⎯ A
Methodology for Behavior Engineering,” IEEE Trans. Systems, Man, and
Cybernetics, Vol. 26, No. 3 (1996)

[31] E. Tunstel, “Mobile Robot Autonomy via Hierarchical Fuzzy Behavior Control,”
in Proc. 6th Intl. Symp. on Robotics and Manuf., 2nd World Automation Congress,
Montpellier, France (1996)

