
Robot Inverse Kinematics via Neural and Neurofuzzy
Networks: Architectural and Computational Aspects for

Improved Performance
SPYROS N. RAPTIS, ELPIDA S. TZAFESTAS, and SPYROS G. TZAFESTAS

Intelligent Robotics and Automation Laboratory (IRAL)
Department of Electrical and Computer Engineering

National Technical University of Athens
Zographou Campus, 15773, Athens, GREECE

Tel.: +30-1-772 2489, Fax: +30-1-7722490, E-mail: tzafesta@softlab.ece.ntua.gr

Abstract: Neural networks are universal nonlinear-function approximators and have for
long time been used to implement various practical nonlinear inverse mappings. The
choice of network type and structure depends on the mapping type and the degree of
generalization required. The use of neural networks for solving the inverse robot
kinematics has been extensively studied by many workers, but still some problems
related to the complexity and strong nonlinearity of the inverse kinematics process need
suitable heuristic and ad-hoc techniques and simplifications. The aim of this paper is
exactly to contribute towards filling this gap by investigating a number of
computational and architectural issues so as to improve the performance of the
implementation of the inverse kinematics process. These issues include the generation
and preprocessing of training data, the data scaling, the treatment of multiple solutions,
the reduction of the approximation error, and the speeding-up of the training process. A
generic neural network architecture is proposed which employs multiple radial-basis
function (RBF) network elements and the “mixture of local experts” principle. An
algorithm is presented for the training data preprocessing which greatly reduces the
training time and overall system error. Two fuzzy-logic solutions are provided and
discussed; one employing a fuzzy associative memory (FAM), and the other a
neurofuzzy cell architecture proposed by the authors. In all cases no knowledge is
assumed about the inverse kinematics of the robot at hand, as long as its forward
kinematics is known. Some indicative simulation results are included and discussed.

Keywords: Neural networks, inverse kinematics, radial basis function networks, data
preprocessing, fuzzy associative memory, neurofuzzy cell.

1. Introduction
Robotics is a research and development field with diverse applications in manufacturing,
hazardous environments, aerospace, undersea research, medical services and domestic
households. Industrial robotic manipulators are complex nonlinear dynamic systems, typically
modeled as a serial chain of n rigid bodies (links). One end of the chain is usually fixed to
some reference surface (frame), whereas the other end is free, thus constituting an open
kinematic chain of moving rigid bodies. The three main problems in industrial robotic
research are: kinematics, dynamics, and control. Kinematics is distinguished in forward
kinematics and inverse kinematics. The forward kinematics problem is a simple and

straightforward problem consisting primarily of finding the position and orientation of the end
effector in a Cartesian space given particular joint angles. Inverse kinematics deals with
finding the joint angles for given position and orientation of the end effector in the Cartesian
space, and can be very complex depending on the robot structure and number of degrees of
freedom. The inverse kinematics problem has usually many possible solutions and it is not
always obvious which set of joint angles to select.

Although in many cases there exists a closed form solution, there are many others which need
time-consuming iteration that makes it not suitable for real-time application. Therefore an
attempt was made by many workers to eliminate coordinate transformation from the Cartesian
to the joint space for robot control applications. One solution is to compute the joint torques
from the desired Cartesian trajectory [25,26], and another is to solve for the joint velocities
instead of the joint angles [27] which is an easier task. The alternative approach is to use
universal approximators based on neural, fuzzy and neuro-fuzzy learning [1-3, 13, 17, 28-37].

The purpose of the present paper is to investigate and treat some of the key problems
encountered when solving the inverse kinematics through neural and neuro-fuzzy learning,
namely the problems of generating and preprocessing training data, handling multiple
solutions, reducing the approximation error, and lowering the training time. To this end, a
general neural architecture is proposed which employs multiple radial basis function (RBF)
networks and is based on the “mixture of local experts” paradigm, and an algorithm is
presented for the preprocessing of the training data which reduces considerably the training
time and the final overall system error. Regarding the solution through fuzzy logic, a fuzzy
associative memory (FAM) is trained with the aid of the forward dynamic equations, so as to
map the inverse kinematics solution. No knowledge about the inverse kinematics of the robot
is required as long as its forward kinematics is known.

Section 2 discusses the inverse kinematics problem and the conventional approaches to
handle it. Section 3 presents the two basic alternative ways for solving the inverse kinematics
problem via neural networks, namely: the function approximation approach and the
associative memory approach. Section 4 provides a review of the basic features of neural
inverse kinematics (nonuniformity of training data distribution, multiple solutions, learning
issues). Section 5, which is the core of the paper, presents the solutions to the various
subproblems faced when employing the neural inverse kinematics approach. Section 6 deals
with the fuzzy and neuro-fuzzy approach to robot inverse kinematics. Two solutions are
investigated. The first uses a fuzzy associative memory, and the second a neuro-fuzzy cell
structure suitable for general fuzzy inference. Section 7 provides an outline of the results
obtained through neural and neurofuzzy inverse kinematics. Finally, Section 8 gives the
conclusions.

2. The Robot Inverse Kinematics Problem:
 Statement and Conventional Approach

The study of the kinematic behavior of a manipulator involves the forward (direct) and
inverse kinematics analyses. Forward kinematics, deals with transforming joint values
(coordinates in joint space) into Cartesian coordinates of the end-effector (or the tool center
point). For a manipulator of m degrees of freedom (DOFs), i.e. of m revolute or translational
joints, the forward kinematics equation can be written as:

()p t f q t() ()= (1)

where q is an m-vector of joint values, p is an n-vector of end-effector coordinates, and f(⋅) is
continuous nonlinear function that depends on the known kinematic parameters of the robot at
hand. On the other hand, the inverse kinematics problem deals with the inverse mapping:

()q t f p t() ()= −1 (2)

The most direct way to deal with (2) is to obtain a closed form solution from (1), but for many
robots, this is not possible due to the complex and nonlinear nature of f.

Another approach for addressing the inverse kinematic problem is to use the linear relation
between the joint and Cartesian velocities:

&() () &()p t J q q t= (3)

where J(q) is the n×m Jacobian matrix and can, in general, be singular. This way explicit
calculation of the joint coordinates may be avoided and although a large matrix inversion may
be required, this may prove to be simpler.

To determine the joint values for given end-effector coordinates, the joint velocity needs to be
computed. This can be done through:

() () ()[]&() () &() () () ()q t J q t r t I J q t J q t k t= + −+ + (4)

where ()J q t+ () is the pseudoinverse of the Jacobian, I is the identity matrix, and k(t) is an m-
vector of arbitrary time-varying variables. The pseudoinverse is clearly crucial for the
computation of the joint velocities.

Many analytical and arithmetic methods have been proposed for the solution of the inverse
kinematics problem. Among them the pivot method that decomposes the pseudoinverse of the
Jacobian, J + , into sub-matrices, the extended pivot method that directly computes the joint
velocities, the table-lookup method that calculates J + off-line and stores it in memory, the
residue arithmetic method that uses a parallel algorithm to compute J + , the least squares
method that directly computes the joint velocity without explicitly solving J + , etc.

3. Neural Network Approach to Robot Inverse Kinematics
Neural networks have also been used to address the inverse kinematics problem. They are
mainly used in two ways, namely for function approximation and as associative memories.

• For function approximation, where the neural network is trying to formulate an
appropriate input-output mapping based on data obtained by the solution of the forward
kinematics problem of the robot at hand.

• For associative memories, where generic or specific analytical or iterative optimization
algorithms exist and are used to produce directly inverse kinematics data for the robot.
The neural network is trained in a supervised manner to memorize them and gracefully
generalize for unforeseen cases. In this case, the neural network is used to replace these
algorithms for the on-line operation. The advantage of the neural network
implementation over these algorithms, is that the latter are computationally very
expensive and cannot be used in real-time applications, while the neural network can be
used as a very fast recalling component, after the learning phase is completed.

Among other methods for achieving neural network based learning control, Barto in [14]
specifies the following:

• Copying an existing controller, which roughly corresponds to the associative memory
perspective as described above;

• Identification of a system inverse, which roughly corresponds to the function
approximation perspective (e.g. [4]); and

• Differentiating a model, (e.g. [11]).

3.1. Neural Function Approximation

In the function approximation perspective, many references are available in the literature that
attempt to use a multi-layer perceptron trained with the backpropagation algorithm to solve
the inverse kinematics problem, e.g. [13]. Unfortunately, the learning times required prove to
be large while the error remains considerably high and contains local bursts.

In [13], the average error was about 5% while the maximum error reached 10%. Therefore, it
was concluded by the authors that ‘plain’ backpropagation multi-layer perceptron neural
networks are sufficient only as an initial guess to another iterative inverse kinematics
algorithm.

In [17] a neural network structure called dynamic neural processor consisting of relatively
complex components called dynamic neural units is presented along with a respective
learning algorithm. The model’s usefulness for the problem of inverse kinematics is tested on
a two-link robot manipulator appropriately constrained so as to avoid multiple solutions.

3.2. Neural Associative Memories

Most of the approaches of this category, make use of the Jacobian and/or its pseudoinverse
and of recurrent neural networks (often Hopfield networks) for their implementation.

In [1] a recurrent neural network is designed based on a reflexive generalized inverse
problem. The methodology relies on recent results on recurrent neural networks for solving
matrix equations. A dynamic equation relating J to its pseudoinverse is derived assuming that
the Jacobian can be considered to be constant within small enough time intervals during the
robot motion. This way, the authors state that no training is required as opposed to the
supervised learning neural networks for robot control. A tree DOFs planar robot was used to
investigate the feasibility of the proposed method. It is clear that the proposed method does
not used neural networks in the conventional way since no training takes place, but only as an
algorithm representation scheme, i.e. for storing an input-output mapping which was derived
algebraically.

In [2], Hopfield analog neural computation has been proposed to implement the Jacobian
control. The states of the neurons represent the converted joint velocities while the network
inputs and the connection weights are updated according to the current Cartesian velocity
command. But the aim of robot inverse kinematics is to guarantee position tracking rather
than velocity tracking and zero steady state velocity as pursued in [2] does not necessarily
guarantee position tracking.

In [3] it is argued that the above problem arises due to the fact that the Cartesian position
commands are completely ignored in the design (the error criterion is misleading as discussed
in a next section). Alternatively, the energy function of the Hopfield network is reformulated
to implement a sliding mode control scheme that the authors claim to guarantee also position

tracking and enjoys the robustness adherent to sliding mode control combined with the neural
networks features.

4. Features of Neural Inverse Robot Kinematics
The application of neural techniques to the inverse kinematics problem of robot manipulators,
presents certain special difficulties arising mainly from the ill-posed, nonlinear nature of the
problem and the difficulty of effectively inverting a one-to-many mapping. Moreover, the
increased solution accuracy required by the robot applications makes the application of neural
networks for inverse robot kinematics a real challenge. Some of the main requirements and
difficulties of this task are described in the following.

Throughout the rest of the discussion, we will assume that the forward kinematics problem is
solved for the robot of interest. This assumption is quite natural since using, for example, the
Denavit-Hartenberg (D-H) kinematic parameters and appropriate matrix operations we may
obtain the end-effector’ s position and orientation (pose) for any set of joint values for any
serial open kinematic chain.

In the following we will use the term ‘forward model’ to refer to whatever mechanism is
available to provide forward kinematic solutions. This, for example, could be the D-H model
as proposed by Paul [23], the real robot manipulator equipped with end-effector position
detectors [24], a neural network emulator trained for forward kinematics, etc. Moreover, we
will assume that this model is accurate, i.e. the kinematic parameters are precisely known and
the robot of interest is calibrated.

To train a neural network controller for forward kinematics, enough inputs may presented to
the forward model and the respective outputs obtained. These inputs may be generated at
random or uniformly within a certain range of values. The resulting input-output pairs may be
fed into a supervised learning algorithm.

For learning the inverse mapping using neural networks, the same set of pairs could be used
with the inputs exchanged with outputs. In [4], this is called ‘general learning’. However,
apart from the standard problems of neural training such as the inefficiency of ‘plain’
backpropagation, the choice of initial weight values etc., at least three more major problems
arise during such an endeavor as described in the following.

4.1. Non-Uniformity of Training Data Distribution

Since the data used as input for training the inverse kinematics neural network are the outputs
of the forward model, they can not be uniformly distributed in the training set. Due to the
error criterion used for evaluating network performance (usually sum of squared errors on the
training set) the output error of the resulting inverse system will be higher for robot responses
that are not well represented in the training set.

1q1a

q2

2

q3

a

a3

Figure 1. A typical non-planar PUMA manipulator with 3R lower degrees of freedom.

For example, consider a generic 3R non-planar manipulator, shown in Fig. 1, which
corresponds to the first three lower degrees of freedom of a typical industrial manipulator.
Fig. 2 shows the inputs to the forward model as produced by varying each of the joint values
with a constant step. These are evenly distributed and are used to produce training pairs. Fig.
3 shows their respective outputs according to the forward model. Since they are interchanged
to be fed to the inverse kinematics neural network, it is clear that the network’s inputs will
certainly not be uniformly distributed. Random selection of a subset of these to be the training
set may cause some regions of the inputs (Cartesian coordinates) to be poorly represented.

Figure 2. Distribution of training data points in the joint space (inputs to the forward

model, outputs for the inverse kinematics neural network)

Figure 3. Distribution of training data points in the Cartesian workspace (outputs of the

forward model, inputs to the inverse kinematics neural network)

This usually causes problems when used with feedforward backpropagation neural networks.
Moreover there is no straight way to force the network to emphasize to specific portions of
interest within the workspace where the manipulator is meant to operate and to suppress
unrelated portion of the workspace that the robot may never need to reach.

A training set consisting of pairs that are not uniformly distributed in the input space, inhibits
the use of some alternative network architectures. The well-known radial basis function
networks (RBFNs) rely much of their performance in this uniformity since one neuron of their
hidden layer is associated with each input pattern or a cluster of input patterns. The overall
system output for a random input is formulated roughly as an interpolation between these
memorized points. This makes the RBFNs quite sensitive on the training data distribution.

4.2. Multiple Solutions

Even for non-redundant manipulators, i.e. for manipulators whose number of joints is less or
equal to the dimension of the workspace, the inverse kinematics problem has not always a
single solution. This means that several (quite different) joint coordinates may lead the end-
effector to the same (or very similar) Cartesian workspace coordinates. Thus, inverting the
input-output pairs to feed them to the supervised learning algorithm, the network will be
taught to respond in the same (or very similar) input with various (or very different) outputs.

Such data inconsistencies will, of course, either inhibit learning from converging or result to a
network that produces a mix of all the associated outputs at the presence of an ‘inconsistent’
input.

So, making a system invertible is not always easy or even possible, and can only be done at
the cost of adding extra inputs to the network (e.g. configuration information as ‘left shoulder
elbow above wrist’) or designing a system of more complex architecture and/or learning
algorithm.

4.3. Minimization of Misleading Error Criterion

The neural network will accept as inputs the workspace Cartesian coordinates and produce as
output the joint coordinates. So, during supervised learning the error propagated will be the
difference between the target joint values and the output of the network.

This is quite misleading since our basic aim is to design a system that will minimize the error
between the workspace coordinate command and the workspace coordinates actually attained
by the robot. In some circumstances a very small error in the joint coordinates may yield a
very large error in the workspace coordinates. Equivalently we may say that the system
trained in such a way, is essentially an open control system in the Cartesian space.

This way, even a fairly large multi-layer perceptron trained with plain backpropagation is not
able to reduce the error to zero. This, of course, is not due to the network since when the
closed form analytical equations of the system can be calculated, supervised learning of this
network may indeed lead the error virtually to zero.

However, if we can manage to decrease this ‘misleading’ error criterion enough we can
expect that the resulting network will perform accordingly well, i.e. the command and
actually attained Cartesian coordinates will be as close as desirable.

Some additional problems of the application of ‘plain’ multi-layer perceptron neural networks
in inverse modeling that do not have their source in the special features of the inverse
kinematics problem but in the network itself, include the too large training periods required
by backpropagation and the inefficiency of selecting the initial weights randomly.

4.4. Learning Algorithm

The generalized delta rule used by the plain backpropagation learning algorithm to compute
the gradient needed for the steepest descent, achieves low learning rates in virtually every
problem. Moreover, the accuracy obtained after the network converges (if it does at all), is
often too poor for the network to be used to real-world robotic applications.

The performance of steepest descent methods in the vicinity of a minimum is very poor and
consists one of the main reasons for its low overall performance.

4.5. Selection of Initial Weights

Random selection of initial weights may lead many of the neurons fast to saturation, thus
having minor contribution to the overall network output. Updates of such neurons by the
learning algorithm are useless. By selecting initial weights in such way, there exists no way to
force sufficient number of neurons to the active region of the network in order for them to
participate in the formulation of the desired mapping.

5. Neural Inverse Kinematics Problems and their Treatment
The aforementioned problems need to be treated in order to obtain a system that can
effectively address the inverse kinematics problem using neural networks so that accuracy,
robustness, and training time can be acceptable.

5.1. Generating the Training Patterns

A typical data producing scheme, would loop though the permissible values of the joint
angles and calculate their respective workspace coordinates through the forward model to
produce a set of forward kinematic solution pairs. Figures 2 and 3 contain such data as
produced by the forward model of the 3R robot described above by looping for each of the
joints with a constant step.

Ideally, this set of pairs if reversed would provide sufficient data to a supervised learning
algorithm for inverse kinematics. But that is not the case for two main reasons:

• Multiple solution pairs are present in the data set, i.e. a specific point in the workspace
may be reached by two or more different configurations of the robot, so two or more of the
inverted pairs could have identical or very similar inputs (workspace coordinates) related
to two very different outputs (joint coordinates). This would render the data inconsistent.

• The distribution of training pairs in the input universe after reversing inputs and outputs
turns out to be not as uniform as the Fig. 2, but rather more like Fig. 3 seriously affecting
the generalization or even the convergence itself of a neural network that would be trained
upon them.

These two problems definitely need to be sorted out for an adequate training set to be
obtained.

5.2. Special Architectures and/or Learning Algorithms for Multiple Solutions

Obviously, for the efficient control of a robot arm, all solutions should be available to the task
planner when a path is generated for the end-effector in the Cartesian coordinate space.

Unfortunately, most researchers do not explicitly describe strategies to address the multiple
solutions problem. Suggested methodologies are usually tested through simulation of a two-

or three-degrees-of-freedom planar robot limiting the Cartesian or joint coordinate space so as
to exclude multiple solutions.

Examples of related work given by are Jordan [15] and Yabuta et al. [16] who suggested
solutions for the inverse kinematics calculation by neural networks with a special scheme to
deal with this problem.

A quite obvious and not too ‘expensive’ approach, uses one neural network module per
configuration. So, in the case of positioning the 3R robot, we would need four neural network
modules for inverse kinematics. This is quite reasonable since:

• Trying to assign multiple tasks to a neural network results in lengthy training periods and
questionable convergence due to the ‘spatial crosstalk’ phenomenon. This arises when the
network tries to learn two quite different mappings and mainly results from the distributed
nature of the representation inside the network.

• It keeps the system more modular without requiring much more resources. A rather small
network proves to be quite effective in dealing with each configuration alone.

• Such an architecture conforms with the ‘mixture of local experts’ architecture as proposed
by Jacobs et al. [18], where a set of neural networks appropriately coordinated by a so
called ‘gating network’ are competing to learn different aspects of a problem.

Peeking at the kinematic properties of the robot at hand, one may deal with separating the
data corresponding to different configurations by selectively limiting the ranges of the loops
used to produce them. For example, one could restrict the 3R robot to the left and above
configuration by imposing the conditions θ2 90> − ° and θ3 90> ° .

A different way to handle multiple configurations, is to apply the ‘mixture of local experts’
architecture (also referred to as ‘modular neural network’ [20]) and let each of the various
networks specialize to different configurations through competition. Of course, although this
approach seems to be very attractive since it requires no prior information relatively to the
manipulator except of the number of configurations, it involves various risks and certainly
requires more training time since the gating network needs to figure out the different
configurations by itself so as to assign one neural network per configuration. Moreover, it is
not appropriate for the case of redundant robots where the number of configurations may be
infinite.

5.3. Rendering the Data Distribution More Uniform

The distribution shown in Fig. 3 concerning the distribution of learning samples in workspace
coordinates is far from acceptable. What we would like, is to have more uniformity for the
following reasons:

• To facilitate the network’s convergence during the learning phase.

• To improve its generalization capabilities during recall.

• To be able to efficiently make use of network architectures alternative to multi-layer
perceptrons, like radial basis function networks by directly assigning the centers the
Gaussian functions of their prototype layer to coincide with carefully selected
‘representative’ exemplar patterns.

Actually, it would be desirable that our input rather than our output data have the distribution
of Fig. 2. Our advantage is that we have a forward kinematic module available. So, a large

number of training pairs can be produced off-line. Then, from these data we can explicitly
select a set whose Cartesian coordinates are matching the desired distribution.

In the case where a closed form inverse kinematics solution is available, one can make use of
it to appropriately choose uniformly (with respect to the Cartesian coordinate inputs)
distributed data. This approach was not adopted so as to retain the generality and not to
restrict the investigation to robots with closed form inverse kinematics solution. This choice is
respected throughout the description.

For the exemplar 3R robot a large number of such data was produced. Then a lattice was
defined on the Cartesian workspace as shown in Fig. 4. This lattice represents the desirable
input data distribution.

Figure 4. A lattice defined on the Cartesian workspace of the robot

Figure 5. A more uniform distribution of the patterns of Fig. 3

Well known algorithms may be then used to isolate the samples that are close to the nodes of
the lattice. These will become the training set, while the others will be used as the test set.
Fig. 5 shows the result of such an algorithm for the case of the 3R robot.

It is obvious that the set of pairs collected with this method may match the desired
distribution (within the workspace of the robot, of course) in an arbitrary degree depending
solely on the number of pairs initially produced and the matching criterion imposed to
classify a pattern as ‘belonging’ to a certain node. From a certain point and further, no
important advantage is really gained by matching the desired distribution to higher degrees.

One of the special features of this approach is that the number of training patterns required is
very limited comparing to the number of test patterns, minimizing thus the required training
time to achieve a desired error level.

A different method for the self-generation of training patterns has been proposed by Albus for
his CMAC [5] and Kuperstein for sensory-motor coordination [6]. According to this method,
once the network has been sufficiently well ‘bootstrapped’ using randomly generated training

patterns, it can be used to produce a set of training patterns that approximately yield inputs in
the correct distribution. More specifically, if we have a set of training inputs (forward model
outputs), say O, that we would like to be present in the training set, we generate the training
set using pairs:

()o f o f oo t t(()), () , o Ot ∈

where oo()x is the observed system output vector when x is applied, and f denotes the
‘bootstrapped’ network’s response. This way, network performance is improved by bringing
the distribution of the next training patterns more in line and thus allowing for even better
network performance. In [6], a 3% accuracy was achieved after about 1200 iterations.
However, this method does not take advantage of a forward model when available and thus is
more suited for the cases where training data are either ‘expensive’ or hard to obtain.

5.4. Data Scaling

Often, data need to be scaled so as to fit the requirements imposed by the selected neural
network architecture and/or learning rule. In the case of networks with sigmoid or hard limiter
transfer function for the output layer, it is obvious that the data should be in accordance. For
practical applications, a table is created containing the minimum and maximum values for
each input and output which is used to scale data before presenting them to the network.

5.5. Learning with an Emulator

Clearly, to address the problem of minimizing the wrong error function, a way is required to:

• apply the desired workspace coordinates, say pd , to the network,

• obtain the joint coordinates, say qa , from the network’s output,

• apply this action to the forward model to obtain its true output, say pa , and

• convert the ‘true’ system error, p pd a− (and not q qd a−), back into joint errors in
some way.

In bibliography [4, 7], it is common that a differentiable model of the forward system transfer
equations ⎯an ‘emulator’⎯ is used to perform this conversion elegantly. A simple
implementation of this model uses a multi-layer perceptron. This model network can be
trained using a ‘plain’ supervised learning scheme since the forward kinematics problem does
not suffer from multiple solutions. Backpropagation can be used to derive all ∂ ∂p q required
with the difference that it will also be used for the input units of the emulator and not only for
its hidden units. A diagram of such a system is shown in figure 6.

In [17] the learning algorithm ensures that the cost function used to train the network involves
the error that is actually observed between the position command and the actual position
attained by the robot. But on the other hand, the multiple solutions problem is bypassed by
considering an appropriately constrained two-link planar manipulator.

Inverse
Neural

Network
Target
Ouputs

Control
Actions

Observed
Outputs

(differentiated)

Error

System
(D-H Model)

Model
Neural

Network

Figure 6. Training a controller using a trained differentiable model of the system

5.6. Selecting the Network Architecture and the Learning Algorithm

Many kinds of neural networks can be used to infer the mapping required by inverse
kinematics. One of the most commonly used networks in robotics is the multi-layer
perceptron equipped with the backpropagation algorithm while, depending on the specific
application, an alternative may be provided by recurrent neural networks such as the
Hopfield. Although radial basis function neural networks possess certain very attractive
characteristics, their use in robotics and inverse kinematics specifically, is comparatively
limited.

The inflexibility of ‘plain’ backpropagation, has partly put it aside especially in the presence
of more recent and promising learning rules as the delta-bar-delta, quasi-Newton methods, the
Levenberg-Marquardt algorithm etc., and more efficient (at least for some specific problem
domains) network architectures as the radial basis function networks.

Research on methods to accelerate the backpropagation learning algorithm fall into two major
categories [9]:

• ad-hoc techniques: These include ideas as using momentum terms and rescaling variables,
varying the learning rate, etc.

• standard numerical optimization techniques: The most popular of these used conjugate
gradient or quasi-Newton methods [8, 10]. Newton’s method can successfully complement
steepest descent methods but by the cost of increased memory and resource requirements
since the Hessian needs to be evaluated and inverted, and by the non-triviality of optimally
switching between steepest descent and Newton’s method. An even more efficient
technique that is based on the Marquardt algorithm for nonlinear least squares is presented
in [9].

Due to the computational load and memory requirements, the standard numerical optimization
methods are restricted to multi-layer perceptron networks consisting of no more than a few
hundred weights. When this is the case, these methods can offer an improvement of about two
orders of magnitude with respect to the rate of convergence compared to the steepest descent
technique.

5.7. Radial Basis Function Networks

A radial basis function network (RBFN) contains a hidden (prototype) layer of radially
symmetric and bounded transfer function in its hidden layer. A thorough investigation of
RBFNs can be found in [20].

RBFNs can be used virtually to any problem where a backpropagation network would be
considered providing advantages like much faster training, formation of better decision
boundaries, etc. Its main disadvantages, though, are usually the larger number of hidden
nodes required since backpropagation networks give a more compact distributed
representation.

Training a RBFN consists of two phases:

• A clustering phase, when input data are formed into clusters, using for example a k-means
algorithm, and updating the weight from the input to the prototype layer so that each
function is centered at each cluster and its radius is appropriately adjusted.

• An actual learning phase, where the weights from the prototype to the output layer are
trained using an error learning rule.

By the uniform input data distribution that can be achieved using the lattice scheme described
above, the clustering phase becomes quite safe and fast. Ideally, we could assign one
prototype node (i.e. one radial function) for each of the lattice nodes. In practice, less nodes
were found to be needed for the specific application.

5.8. Geometric Interpretation of Neuron’s Functional Behavior for the Selection of Initial
Weights

It is argued in [11], that by systematically selecting the initial values of the adaptive weights,
the learning time may be reduced.

In [12], a systematic way for choosing the initial weight values is described that is based on a
geometric interpretation of the neural network’s functional behavior. The network used is a
traditional backpropagation neural network with sigmoid transfer functions. The authors
claim that this method considerably reduced the learning time and even caused the network to
converge in many cases where the random selection of initial weight failed.

5.9. Building Prior Information into the Network Design

Multi-layer perceptrons are proven to be ‘universal approximators’, that is, they are able of
approximating any function to an arbitrary accuracy. This is their strength but might as well
be their weakness.

When addressing a problem category, more efficient solution strategies could be derived by
making use of all the available a priori knowledge related to the category as long as the
generality of the approach is sufficiently preserved.

One of the four commonsense rules suggested by Anderson [19] states that: “Prior
information and invariances should be built into the design of a neural network, thereby
simplifying the network design by not having to learn them”. This is the idea behind the
hierarchical neural networks as proposed by Guez and Selinsky [21]. Observing that some
nonlinear functions were central to the control of robot dynamics, they trained them into some
multi-layer perceptrons off-line and then used them as inputs to a final layer that learned to
appropriately combine them so as to produce the overall solution.

Most open-chain industrial manipulators, may be broken down to two kinematic sub-chains,
the first being primarily responsible for positioning the end-effector while the second for
orientating it. Thus, the inverse kinematic problem for these manipulators may be broken
down to two simpler ones, namely calculating the joints coordinates for the first sub-chain
based on the desired Cartesian position of the end-effector, and calculating the joints

coordinates for the second sub-chain based on the desired orientation of the end-effector and
the joint coordinate values obtained for the first sub-chain.

Moreover, the kinematic articulation of the second sub-chain usually coincides with the
definition of Euler angles, so in some cases the second part could consist of just a few
straightforward geometric calculations instead of a neural network.

For a typical industrial manipulator consisting of 6 degrees of freedom (joints), this means
that a 6-by-6 problem is broken down to two 3-by-3 problems. It is obvious that the
complexity of the former is considerably higher than the complexity of the latter.

The 3R non-planar robot that served as an example up to now, is actually the basis for many
of the common industrial robots. It is kinematically identical to the first three DOFs of the
PUMA, the CLOOS and other commonly used manipulators. Moreover, the solution for their
last 3 DOFs is trivial since it reduces to finding a set of Euler angles from an 3×3 orientation
matrix. So, since the decomposition described above is applicable to these robots, this
discussion is also valid for them too. Restricting our focus to the first three DOFs, the
multiple joint solutions that exist in the general case for an arbitrary positioning of the robot
reduce to four, namely left/right shoulder and above/below arm.

It is quite easy to notice that different joint variables depend on different Cartesian
coordinates. Namely, for the left and above configuration, θ1 depends solely on x and y (not
on z) and θ2 , θ3 seem to depend on all x, y, and z. Actually, after a closer look, θ 2 and θ3
really depend on the distance of the end-effector from the z axis of the world coordinate

system and not by x and y explicitly. That is, they depend on z and r x y= +2 2 (i.e. two
instead of three inputs).

So, instead of letting the network figure out this kind of dependency, we may hardwire this in
by supplying r as an additional input. A similar approach was used by Schöneburg et al. [22]
where except the Cartesian coordinates of the target end-effector position they also provided
the network with additional inputs as the sine and cosine of the first and second axes angles.

Undertaking the approach adopted in [12] that uses one neural network per joint so as to
eliminate ‘spatial crosstalk’, we may end up with three small neural networks with input-
output spaces of 2×1 each. Thus a major decomposition has taken place solely based on
observations of the kinematic structure of the robot at hand. Similar simplifying observations
can be made for most manipulators.

Training such small neural networks is quite trivial while training 3×3 is certainly more
demanding especially when more than one hidden layers are required, which is the usual case.

End-Effector
Position

Position
Neural Network

Orientation
Neural Network

Forward
Calculations

End-Effector
Orientation

qa

qb

First
Subchain
Joints

Subchain
Joints

Second

Figure 7. Connecting the two networks

5.10. Pruning the Network

Pruning is a concept introduced by Rumelhart that attempts to minimize both network
complexity and square error over a training set. Pruning provides the means for reducing the
‘overfitting’ phenomenon since a network of minimal complexity that performs well on a
training set is expected to generalize better than a more complex one. The simplest way of
minimizing a network is by removing the relatively small weights.

6. Fuzzy and Neurofuzzy Approach to Inverse Kinematics
The application of the fuzzy methodology will be shown by considering an articulated 3-DOF
robotic manipulator (Fig. 1). In this case Eq. (1) is specialized as:

p a c c a c cx = +2 1 2 3 1 23 (5a)

p a s c a s cy = +2 1 2 3 1 23 (5b)

p a a s a sz = + +1 2 2 3 23 (5c)

where

c q s qi i i i= =cos , sin (i = 1,2), c q q p p px y z
T

23 1 2= + =cos(), [, ,] p

in the position of the robot tip in the Cartesian space; a a a1 2 3, , are the lengths of the links of
the robot, and qi (i = 1,2,3) are the angles of the links as shown in Fig. 1. The analytical
solution of the inverse kinematics problem is given by [38, 39]:

q a
p
p

q a
p
p

x

y

x

y
1 12 2= =

−
−

tan [] tan [] or (6a)

q a
p a a a c a p p

p a a s a a c p p

z x y

z x y
2

1 2 3 3 3
2 2

1 3 3 2 3 3
2 2

2=
− + +

− ± + +
tan [

()()

() ()
]

m
 (6b)

q a
a a p a p p a a

p a p p a a
z x y

z x y
3

2
2

3
2

1
2 2 2

2
2

3
2

1
2 2 2

2
2

3
22

4
=

± − − + + − −

− + + − −
tan [

[()]

()
] (6c)

which reveal the existence of multiple solutions for qi (i=1,2,3).

The linearized version of (6a-c) about some nominal configuration has the following matrix
form:

δ δp q p q=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

[] ,Pij =
p
p
p

 , =
q
q
q

x

y

z

x

y

z

 (7)

where δq are a small variations ()δqi <<1 , and

p a s c a s c11 2 1 2 3 1 23= = − +
∂
∂
 p
 q

x

1
() (8a)

p a s c a c s12 2 2 1 3 1 23= = − +
∂
∂
 p
 q

x

2
() (8b)

p a c s13 3 1 23= = −
∂
∂
 p
 q

x

3
 (8c)

p a c c a c c21 2 1 2 3 1 23= = +
∂

∂

 p
 q

y

1
 (8d)

p a s s a s s22 2 1 2 3 1 23= = − +
∂

∂

 p
 q

y

2
[] (8e)

p a s s23 3 1 23= = −
∂

∂

 p
 q

y

3
 (8f)

p31 =
∂
∂
 p
 q

 = 0z

1
 (8g)

p a c a c32 2 3 23= +
∂
∂

 p
 q

 = z

2
2 (8h)

p a c33 23=
∂
∂
 p
 q

 = z

3
3 (8i)

Following the results of [34-37] all variables δ δ δ δ δ δp p p q q qx y z, , , ,1 2 3 and are fuzzified
using the following seven fuzzy sets(although for higher accuracy more fuzzy sets might be
used):

PL Positive Large
PM Positive Medium
PS Positive Small
Z Zero
NS Negative Small
NM Negative Medium
NL Negative Large

Since Eq. (7) is a linear model, the superposition principle is applicable for the fuzzy
associative memory (FAM) of the robot kinematics.

In [37] the following rules were used to determine δq1 for a given δ δ δp p px y z, and .

Table 1: Fuzzy rules for the linearized kinematics

 δpx
 δq1 NL NM NS Z PS PM PL
 NL PL PM PS Z NS NM NL
 NM PL PM PS Z NS NM NL

 NS PL PM PS Z NS NM NL
p i1 Z Z Z Z Z Z Z Z

 PS NL NM NS Z PS PM PL
 PM NL NM NS Z PS PM PL
 PL NL NM NS Z PS PM PL

The entries of the above fuzzy table (FAM) can be obtained via inspection of a three-
dimensional graph. Similar FAMs have to be constructed for p i2 and p i3 (i=1,2,3) in order to
determine δq1. Each entry of the FAM corresponds to a rule of the type:

IF p p qi x is NM) AND (is PS) THEN is NS(1 1δ δ

The overall FAM (fuzzy look-up table) consists of 49 rules, and therefore for p i1 , p i2 and
p i3 one needs a total of 147 rules for determining the inverse kinematics solution, which

implies a very high computational load. Therefore we must look for methods of reducing the
computational effort. The above technique, although theoretically correct, is not suitable for
automatically solving the inverse kinematics problem, since it needs the construction of a 3-D
graphical representation of the FAM which is a difficult job.

An alternative method consists in collecting a set of training samples from measurements of
qi (i=1,2,3) obtained by moving the robot to a set of different positions px , py and pz (Fig.
8).

Robot
(3 DOF)

End effector
position

Σ
Neurofuzzy

Cell

px p py z

qd

qa

+

-

Figure 8. Neurofuzzy structure for robot inverse kinematics; qd : desired joint angle vector,

qa: joint angle vector actually provided by the neurofuzzy cell

Then, a neurofuzzy network can be trained with a sufficient number of data points [40-42].
Here a number of issues similar to those studied in sections 4 and 5 may be considered. In
particular, the membership functions and the network weights have to be adjusted so as to
obtain the desired minimum error. In practice, instead of moving the actual robot to different
positions for generating the required training data, one can use the forward kinematic
equations which can be easily and uniquely computed. This has the additional advantage of
selecting the desired angles at the design phase and producing a unique mapping between the
angles and the corresponding Cartesian positions.

7. Simulation Results
Standard matrix operations may be used to calculate the forward kinematics of the any robot
using the D-H methodology. Assuming that the kinematic parameters of the robot are
accurate we may relay on it to produce valid workspace coordinate and joint coordinate pairs.

Data has been pre-processed following the techniques as described in the previous sections
(figures 2, 3, 4, and 5 depict the various steps of the actual simulation).

RBFNs were used as the underlying neural network model. Our choice was to start with
relatively large networks and to prune, after learning had converged, the nodes that less
participated in the output, i.e. the prototype nodes whose weight received small values
comparing to the values of the others.

The approach undertaken to face the spatial crosstalk and the multiple solutions as described
above, led to the overall system architecture illustrated in Fig. 9.

θ1

θ

θn

2
Target

Pose

Different
Joints

Gating M odule(configuration selection)

Different
configurations

From ta sk pla nner ...

Figure 9. The overall system architecture

Due to the efficiency of RBFNs and the adequate data pre-processing, the networks
converged quite fast. Training was stopped for each network when error started to decrease
very slowly. Pruning took place by periodically removing the weights whose magnitudes
were below a threshold percent of the maximum of the absolute magnitude of all the weights
appearing in the network. In some cases, the results of pruning were remarkable.

The final system error managed to drop under 2%. By using more data produced by the
forward model, a more dense lattice during preprocessing, and more hidden neurons at the
prototype layer the error may be further decreased.

The corresponding results obtained by the neurofuzzy system proposed in [42], with the
input-output variables quantized in five intervals and an MLP with one hidden layer, showed
an RMS error less than 2%.

8. Conclusions
A general architecture along with related techniques to face the difficulties of the application
of neural networks to the inverse robot kinematics problem were presented. An algorithm was
described that may be used to improve the quality of the training pairs and to make possible
and much more efficient the use of neural networks alternative to the multilayered
perceptrons and to training algorithms alternative to the backpropagation of error. Simulation
results were presented for the case of a 3R non-planar robot arm with a very common

kinematic structure. Throughout the discussion the robot was assumed to be calibrated. If this
is not so, the same architecture still proves to be very efficient.

Two fuzzy logic methods were examined via a FAM and a neurofuzzy structure. It was
assumed that knowledge of the forward kinematics of the robot at hand was available,
through, for example, the D-H kinematic parameters which were assumed to be known and
accurate. However, no knowledge was assumed relatively to the inverse kinematics of the
robot at hand. So this approach is quite generic and thus applicable to a wide range of robotic
manipulators. If the D-H model is used to obtain forward kinematics solution pairs then it is
implicitly assumed that the robot is calibrated. If that is not the case the actual robot along
with a positioning sensor will have to be used to produce the required data.

References
[1] G. Wu and J. Wang, “A Recurrent Neural Network for Manipulator Inverse Kinematics

Computation,” Proc. IEEE Intl. Conf. on Neural Networks (ICNN’94), Florida (1994)

[2] J. Guo and V. Cherkassky, “A Solution to the Inverse Kinematic Problem in Robotics
Using Neural Network Processing,” Proc. IEEE Intl. Conf. on Neural Networks, San
Diego, California, pp. 617-621 (1988)

[3] Y. Li and N. Zeng, “A Neural Network Based Inverse Kinematics Solution In Robotics,”
Neural Networks in Robotics, G. A. Bekey and K. Y. Goldberg, eds., Kluwer, pp. 97-111
(1993)

[4] D. Psaltis, A. Sideris, and A. Yamamura, “A Multilayered Neural Network Controller,”
Proc. IEEE Intl. Conf. on Neural Networks, San Diego, California, pp. 17-21 (1987)

[5] J. S. Albus, “A New Approach to Manipulator Control: The Cerebellar Model
Articulation Controller (CMAC),” Transaction of the ASME, pp. 220-227, Sept. (1975)

[6] M. Kuperstein, “Implementation of an Adaptive Neural Controller for Sensory-Motor
Coordination,” Connectionism in Perspective, R. Pfeifer, Z. Schreter, F. Fogelman-
Soulié, and L. Steels (Eds.), Elsevier, North-Holland

[7] A. Cousein, “Neural Networks for Robot Control,” Intl. Conf. on Software Engineering
for Real-Time Systems, Cirencester, UK, pp. 119-124 (1991)

[8] H. S. M. Beigi and C. J. Li, “A New Set of Learning Algorithms for Neural Networks,”
Proc. ISMM Conf. on Computer Architectures in Design, Simulation, and Analysis, New
Orleans, Louisiana (1990)

[9] M. T. Hagan and M. B. Manhaj, “Training Feedforward Networks with the Marquardt
Algorithm,” IEEE Proc. Neural Networks (1994)

[10] R. Battiti, “First- and Second-Order Methods for Learning: Between Steepest Descent
and Newton’s Method,” Neural Computation, Vol. 139, No. 3, pp. 301-310 (1992)

[11] D. Nguyen and B. Widrow, “Improving the Learning Speed by Choosing Initial Values
of the Adaptive Weights,” Proc. IJCNN, San Diego, pp. 111-121 (1990)

[12] M. Shoham, C. J. Li, Y. Hachman, and E. Kreindler, “Neural Network Control of Robot
Arms,” Annals of the CIRP, Vol. 41, No. 1, Technion, Israel Institute of Technology,
Haifa, Israel, pp. 407-410 (1990)

[13] A. Guez and Z. Ahmad, “Solution to the Inverse Kinematics Problem in Robotics by
Neural Networks,” IEEE Intl. Conf. on Neural Networks (ICNN), San Diego, California
pp. 617-621 (1988)

[14] A. G. Barto, “Connectionist Learning for Control,” in Neural Networks for Control, MIT
Press, Cambridge, Massachusetts, pp. 5-58 (1990)

[15] M. I. Jordan, “Supervised Learning and Systems with Excess Degrees of Freedom,”
COINS Technical Report, pp. 88-27 (1988)

[16] T. Yabuta, T. Tsujimura, T. Yamada, and T. Yasuno, “On the Characteristics of the
Robot Manipulator Controller Using Neural Networks,” IEEE Intl. Workshop on
Industrial Applications of Machine Intelligence and Vision, MIV-89 (1988)

[17] M. M. Gupta and D. H. Rao, “General Learning for Robot Coordinate Transformations
Using Dynamic Neural Network,” Proc. SPIE Conf. on Intelligent Robots and Computer
Vision, vol. SPIE-2055, pp. 524-535 (1993)

[18] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive Mixtures of Local
Experts,” Neural Computation, 3, pp. 79-87 (1991)

[19] J. A. Anderson, “General Introduction,” In Neurocomputing: Foundations of Research
(J. A. Anderson and E. Rosenfeld, eds.), pp. xiii-xxi, Cambridge, MA: MIT Press (1988)

[20] S. Haykin, “Neural Networks,” Macmillan, NY (1994)

[21] A. Guez and J. Selinsky, “Neurocontroller Design via Supervised and Unsupervised
Learning,” J. Intell. and Robotic Systems, Vol. 2, pp307-335 (1989)

[22] E. Schöneburg, N. Hansen, and A. Gawelczyk, “Neuronale Netzwerke, Einführung,
Überblick und Anwendungsmöglichkeiten,” Msrkt-u, Technik-Verlag (1990)

[23] R. P. Paul, “Kinematic Control Equations for Manipulators,” IEEE Trans. on Systems,
Man, and Cybernetics (1981)

[24] X. Zhang, J. Lewis, F. L. N-Nagy, “Inverse Robot Calibration Using Artificial Neural
Networks,” Engng. Applic. Artif. Intell., Vol. 9, No. 1, pp. 83-93 (1996)

[25] Y. T. Li and K. Han, “A Lyapunov Based Cartesian Trajectory Control for Robot
Manipulators,” Chinese J. of Automation, Allerton Press, Vol. 17, No. 1 (1991)

[26] Y. T. Li and K. Han, “A Variable Structure Control Scheme for Robot Cartesian
Tracking,” Chinese J. of Automation, Allerton Press, Vol. 18, No. 3 (1992)

[27] D. E. Whitney, “Resolved Motion Rate of Manipulators and Human Prostheses,” IEEE
Trans. Man Machine and Systems, MMS-10, pp. 47-53 (1969)

[28] P. Gupta and N. K. Sinha, “Control of Robotic Manipulators Using Neural Networks: A
Survey,” In: S. G. Tzafestas, ed., Intelligent Control Methods and Applications, Kluwer,
Dordrecht/Boston, pp. 103-136 (1997)

[29] B. F. J. Artaga, “Multilayer Back-Propagation Network for Learning the Forward and
Inverse Kinematic Equations,” IEEE Intl. Joint . Conf. On Neural Networks (IJCNN ’90),
Washington, D.C., Vol.2, pp. 319-322 (1990)

[30] A. Guez and Z. Ahmad, “Accelerated Convergence in the Inverse Kinematics via
Multilayer Feedforward Networks,” Proc. IEEE Intl. Joint Conf. on Neural Networks
(IJCNN ’89), Washington, DC, vol.2, pp. 341-344 (1989)

[31] L. Nguyen, R. Patel and K. Khorasani, “Neural Network Architectures for the Forward
Kinematic Problem in Robotics,” Proc. IEEE Intl. Joint Conf. on Neural Networks
(IJCNN ’90), pp. 393-399 (1990)

[32] S. G. Tzafestas, “Neural Networks in Robot Control,” In : S. G. Tzafestas and H. B.
Verbruggen, Artificial Intelligence in Industrial Decision Making, Control and
Automation, Kluwer, Dordrecht/Boston, pp. 327-387 (1995)

[33] J. Martinez, J. Bowles, and P. Mills, “A Fuzzy Logic Positioning System for an
Articulated Robot Arm,” IEEE Intl. Conf. on Fuzzy Systems (1996)

[34] A. Nedungadi, “Application of Fuzzy Logic to Solve the Robot Inverse Kinematic
Problem,” Proc. 4th SME World Conf. on Robotic Research (1991)

[35] A. Zilouchian, F. Hamono, and T. Jordanides, “Intelligent Control Using Artificial
Neural Networks and Fuzzy Logic: Recent Trends and Industrial Applications,” In: S. G.
Tzafestas (ed.), Methods and Applications of Intelligent Control, Kluwer,
Dordrecht/Boston, pp. 69-102 (1997)

[36] S. G. Tzafestas and C. S. Tzafestas, “Fuzzy and Neural Intelligent Control: Basic
Principles and Architectures,” In: S. G. Tzafestas (ed.), Methods and Applications of
Intelligent Control, Kluwer, Dordrecht/Boston, pp. 25-67 (1997)

[37] D. W. Howard and A. Zilouchian, “Application of Fuzzy Logic for the Solution of
Inverse Kinematics and Hierarchical Controls of Robotic Manipulators,” J. Intelligent
and Robotic Systems (1998)

[38] R. P. Paul, Robot Manipulators: Mathematics, Programming and Control, The MIT
Press, Cambridge, MA (1981)

[39] F. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics: Control, Sensing Vision and
Intelligence, McGraw-Hill, New-York (1987)

[40] J. S. Jang, “Self -Learning Fuzzy Controllers Based on Temporal Back Propagation,”
IEEE. Trans. On Neural Networks, Vol. 3, No. 5 (1992)

[41] J. S. Jang and C. Sun, “Neuro-Fuzzy Modelling and Control,” Proc. IEEE, Vol. 83, No.
3, pp. 378-406 (1995)

[42] S. G. Tzafestas, S. Raptis, and G. Stamou, “A Flexible Neurofuzzy Cell Structure for
General Fuzzy Inference,” Mathematics & Computers in Simulation, Vol. 41, Nos. 3-4,
pp. 201-208 (1996)

