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Abstract: Neural networks are universal nonlinear-function approximators and have for 
long time been used to implement various practical nonlinear inverse mappings. The 
choice of network type and structure depends on the mapping type and the degree of 
generalization required. The use of neural networks for solving the inverse robot 
kinematics has been extensively studied by many workers, but still some problems 
related to the complexity and strong nonlinearity of the inverse kinematics process need 
suitable heuristic and ad-hoc techniques and simplifications. The aim of this paper is 
exactly to contribute towards filling this gap by investigating a number of 
computational and architectural issues so as to improve the performance of the 
implementation of the inverse kinematics process. These issues include the generation 
and preprocessing of training data, the data scaling, the treatment of multiple solutions, 
the reduction of the approximation error, and the speeding-up of the training process. A 
generic neural network architecture is proposed which employs multiple radial-basis 
function (RBF) network elements and the “mixture of local experts” principle. An 
algorithm is presented for the training data preprocessing which greatly reduces the 
training time and overall system error. Two fuzzy-logic solutions are provided and 
discussed; one employing a fuzzy associative memory (FAM), and the other a 
neurofuzzy cell architecture proposed by the authors. In all cases no knowledge is 
assumed about the inverse kinematics of the robot at hand, as long as its forward 
kinematics is known. Some indicative simulation results are included and discussed. 

Keywords: Neural networks, inverse kinematics, radial basis function networks, data 
preprocessing, fuzzy associative memory, neurofuzzy cell. 

1. Introduction 
Robotics is a research and development field with diverse applications in manufacturing, 
hazardous environments, aerospace, undersea research, medical services and domestic 
households. Industrial robotic manipulators are complex nonlinear dynamic systems, typically 
modeled as a serial chain of n rigid bodies (links). One end of the chain is usually fixed to 
some reference surface (frame), whereas the other end is free, thus constituting an open 
kinematic chain of moving rigid bodies. The three main problems in industrial robotic 
research are: kinematics, dynamics, and control. Kinematics is distinguished in forward 
kinematics and inverse kinematics. The forward kinematics problem is a simple and 



straightforward problem consisting primarily of finding the position and orientation of the end 
effector in a Cartesian space given particular joint angles. Inverse kinematics deals with 
finding the joint angles for given position and orientation of the end effector in the Cartesian 
space, and can be very complex depending on the robot structure and number of degrees of 
freedom. The inverse kinematics problem has usually many possible solutions and it is not 
always obvious which set of joint angles to select. 

Although in many cases there exists a closed form solution, there are many others which need 
time-consuming iteration that makes it not suitable for real-time application. Therefore an 
attempt was made by many workers to eliminate coordinate transformation from the Cartesian 
to the joint space for robot control applications. One solution is to compute the joint torques 
from the desired Cartesian trajectory [25,26], and another is to solve for the joint velocities 
instead of the joint angles [27] which is an easier task. The alternative approach is to use 
universal approximators based on neural, fuzzy and neuro-fuzzy learning [1-3, 13, 17, 28-37]. 

The purpose of the present paper is to investigate and treat some of the key problems 
encountered when solving the inverse kinematics through neural and neuro-fuzzy learning, 
namely the problems of generating and preprocessing training data, handling multiple 
solutions, reducing the approximation error, and lowering the training time. To this end, a 
general neural architecture is proposed which employs multiple radial basis function (RBF) 
networks and is based on the “mixture of local experts” paradigm, and an algorithm is 
presented for the preprocessing of the training data which reduces considerably the training 
time and the final overall system error. Regarding the solution through fuzzy logic, a fuzzy 
associative memory (FAM) is trained with the aid of the forward dynamic equations, so as to 
map the inverse kinematics solution. No knowledge about the inverse kinematics of the robot 
is required as long as its forward kinematics is known. 

Section 2 discusses the inverse kinematics problem and the conventional approaches to 
handle it. Section 3 presents the two basic alternative ways for solving the inverse kinematics 
problem via neural networks, namely: the function approximation approach and the 
associative memory approach. Section 4 provides a review of the basic features of neural 
inverse kinematics (nonuniformity of training data distribution, multiple solutions, learning 
issues). Section 5, which is the core of the paper, presents the solutions to the various 
subproblems faced when employing the neural inverse kinematics approach. Section 6 deals 
with the fuzzy and neuro-fuzzy approach to robot inverse kinematics. Two solutions are 
investigated. The first uses a fuzzy associative memory, and the second a neuro-fuzzy cell 
structure suitable for general fuzzy inference. Section 7 provides an outline of the results 
obtained through neural and neurofuzzy inverse kinematics. Finally, Section 8 gives the 
conclusions. 

2. The Robot Inverse Kinematics Problem: 
 Statement and Conventional Approach 

The study of the kinematic behavior of a manipulator involves the forward (direct) and 
inverse kinematics analyses. Forward kinematics, deals with transforming joint values 
(coordinates in joint space) into Cartesian coordinates of the end-effector (or the tool center 
point). For a manipulator of m degrees of freedom (DOFs), i.e. of m revolute or translational 
joints, the forward kinematics equation can be written as: 

( )p t f q t( ) ( )=  (1) 



where q is an m-vector of joint values, p is an n-vector of end-effector coordinates, and f(⋅) is 
continuous nonlinear function that depends on the known kinematic parameters of the robot at 
hand. On the other hand, the inverse kinematics problem deals with the inverse mapping: 

( )q t f p t( ) ( )= −1  (2) 

The most direct way to deal with (2) is to obtain a closed form solution from (1), but for many 
robots, this is not possible due to the complex and nonlinear nature of f. 

Another approach for addressing the inverse kinematic problem is to use the linear relation 
between the joint and Cartesian velocities: 

&( ) ( ) &( )p t J q q t=  (3) 

where J(q) is the n×m Jacobian matrix and can, in general, be singular. This way explicit 
calculation of the joint coordinates may be avoided and although a large matrix inversion may 
be required, this may prove to be simpler. 

To determine the joint values for given end-effector coordinates, the joint velocity needs to be 
computed. This can be done through: 

( ) ( ) ( )[ ]&( ) ( ) &( ) ( ) ( ) ( )q t J q t r t I J q t J q t k t= + −+ +  (4) 

where ( )J q t+ ( )  is the pseudoinverse of the Jacobian, I is the identity matrix, and k(t) is an m-
vector of arbitrary time-varying variables. The pseudoinverse is clearly crucial for the 
computation of the joint velocities. 

Many analytical and arithmetic methods have been proposed for the solution of the inverse 
kinematics problem. Among them the pivot method that decomposes the pseudoinverse of the 
Jacobian, J + , into sub-matrices, the extended pivot method that directly computes the joint 
velocities, the table-lookup method that calculates J +  off-line and stores it in memory, the 
residue arithmetic method that uses a parallel algorithm to compute J + , the least squares 
method that directly computes the joint velocity without explicitly solving J + , etc. 

 

3. Neural Network Approach to Robot Inverse Kinematics 
Neural networks have also been used to address the inverse kinematics problem. They are 
mainly used in two ways, namely for function approximation and as associative memories. 

• For function approximation, where the neural network is trying to formulate an 
appropriate input-output mapping based on data obtained by the solution of the forward 
kinematics problem of the robot at hand. 

• For associative memories, where generic or specific analytical or iterative optimization 
algorithms exist and are used to produce directly inverse kinematics data for the robot. 
The neural network is trained in a supervised manner to memorize them and gracefully 
generalize for unforeseen cases. In this case, the neural network is used to replace these 
algorithms for the on-line operation. The advantage of the neural network 
implementation over these algorithms, is that the latter are computationally very 
expensive and cannot be used in real-time applications, while the neural network can be 
used as a very fast recalling component, after the learning phase is completed. 



Among other methods for achieving neural network based learning control, Barto in [14] 
specifies the following: 

• Copying an existing controller, which roughly corresponds to the associative memory 
perspective as described above; 

• Identification of a system inverse, which roughly corresponds to the function 
approximation perspective (e.g. [4]); and 

• Differentiating a model, (e.g. [11]). 

3.1. Neural Function Approximation 

In the function approximation perspective, many references are available in the literature that 
attempt to use a multi-layer perceptron trained with the backpropagation algorithm to solve 
the inverse kinematics problem, e.g. [13]. Unfortunately, the learning times required prove to 
be large while the error remains considerably high and contains local bursts. 

In [13], the average error was about 5% while the maximum error reached 10%. Therefore, it 
was concluded by the authors that ‘plain’ backpropagation multi-layer perceptron neural 
networks are sufficient only as an initial guess to another iterative inverse kinematics 
algorithm. 

In [17] a neural network structure called dynamic neural processor consisting of relatively 
complex components called dynamic neural units is presented along with a respective 
learning algorithm. The model’s usefulness for the problem of inverse kinematics is tested on 
a two-link robot manipulator appropriately constrained so as to avoid multiple solutions. 

3.2. Neural Associative Memories 

Most of the approaches of this category, make use of the Jacobian and/or its pseudoinverse 
and of recurrent neural networks (often Hopfield networks) for their implementation. 

In [1] a recurrent neural network is designed based on a reflexive generalized inverse 
problem. The methodology relies on recent results on recurrent neural networks for solving 
matrix equations. A dynamic equation relating J to its pseudoinverse is derived assuming that 
the Jacobian can be considered to be constant within small enough time intervals during the 
robot motion. This way, the authors state that no training is required as opposed to the 
supervised learning neural networks for robot control. A tree DOFs planar robot was used to 
investigate the feasibility of the proposed method. It is clear that the proposed method does 
not used neural networks in the conventional way since no training takes place, but only as an 
algorithm representation scheme, i.e. for storing an input-output mapping which was derived 
algebraically. 

In [2], Hopfield analog neural computation has been proposed to implement the Jacobian 
control. The states of the neurons represent the converted joint velocities while the network 
inputs and the connection weights are updated according to the current Cartesian velocity 
command. But the aim of robot inverse kinematics is to guarantee position tracking rather 
than velocity tracking and zero steady state velocity as pursued in [2] does not necessarily 
guarantee position tracking. 

In [3] it is argued that the above problem arises due to the fact that the Cartesian position 
commands are completely ignored in the design (the error criterion is misleading as discussed 
in a next section). Alternatively, the energy function of the Hopfield network is reformulated 
to implement a sliding mode control scheme that the authors claim to guarantee also position 



tracking and enjoys the robustness adherent to sliding mode control combined with the neural 
networks features. 

4. Features of Neural Inverse Robot Kinematics 
The application of neural techniques to the inverse kinematics problem of robot manipulators, 
presents certain special difficulties arising mainly from the ill-posed, nonlinear nature of the 
problem and the difficulty of effectively inverting a one-to-many mapping. Moreover, the 
increased solution accuracy required by the robot applications makes the application of neural 
networks for inverse robot kinematics a real challenge. Some of the main requirements and 
difficulties of this task are described in the following. 

Throughout the rest of the discussion, we will assume that the forward kinematics problem is 
solved for the robot of interest. This assumption is quite natural since using, for example, the 
Denavit-Hartenberg (D-H) kinematic parameters and appropriate matrix operations we may 
obtain the end-effector’ s position and orientation (pose) for any set of joint values for any 
serial open kinematic chain. 

In the following we will use the term ‘forward model’ to refer to whatever mechanism is 
available to provide forward kinematic solutions. This, for example, could be the D-H model 
as proposed by Paul [23], the real robot manipulator equipped with end-effector position 
detectors [24], a neural network emulator trained for forward kinematics, etc. Moreover, we 
will assume that this model is accurate, i.e. the kinematic parameters are precisely known and 
the robot of interest is calibrated. 

To train a neural network controller for forward kinematics, enough inputs may presented to 
the forward model and the respective outputs obtained. These inputs may be generated at 
random or uniformly within a certain range of values. The resulting input-output pairs may be 
fed into a supervised learning algorithm. 

For learning the inverse mapping using neural networks, the same set of pairs could be used 
with the inputs exchanged with outputs. In [4], this is called ‘general learning’. However, 
apart from the standard problems of neural training such as the inefficiency of ‘plain’ 
backpropagation, the choice of initial weight values etc., at least three more major problems 
arise during such an endeavor as described in the following. 

4.1. Non-Uniformity of Training Data Distribution 

Since the data used as input for training the inverse kinematics neural network are the outputs 
of the forward model, they can not be uniformly distributed in the training set. Due to the 
error criterion used for evaluating network performance (usually sum of squared errors on the 
training set) the output error of the resulting inverse system will be higher for robot responses 
that are not well represented in the training set. 
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Figure 1. A typical non-planar PUMA manipulator with 3R lower degrees of freedom. 

For example, consider a generic 3R non-planar manipulator, shown in Fig. 1, which 
corresponds to the first three lower degrees of freedom of a typical industrial manipulator. 
Fig. 2 shows the inputs to the forward model as produced by varying each of the joint values 
with a constant step. These are evenly distributed and are used to produce training pairs. Fig. 
3 shows their respective outputs according to the forward model. Since they are interchanged 
to be fed to the inverse kinematics neural network, it is clear that the network’s inputs will 
certainly not be uniformly distributed. Random selection of a subset of these to be the training 
set may cause some regions of the inputs (Cartesian coordinates) to be poorly represented. 

 
Figure 2. Distribution of training data points in the joint space (inputs to the forward 

model, outputs for the inverse kinematics neural network) 

 

 
Figure 3. Distribution of training data points in the Cartesian workspace (outputs of the 

forward model, inputs to the inverse kinematics neural network) 



This usually causes problems when used with feedforward backpropagation neural networks. 
Moreover there is no straight way to force the network to emphasize to specific portions of 
interest within the workspace where the manipulator is meant to operate and to suppress 
unrelated portion of the workspace that the robot may never need to reach. 

A training set consisting of pairs that are not uniformly distributed in the input space, inhibits 
the use of some alternative network architectures. The well-known radial basis function 
networks (RBFNs) rely much of their performance in this uniformity since one neuron of their 
hidden layer is associated with each input pattern or a cluster of input patterns. The overall 
system output for a random input is formulated roughly as an interpolation between these 
memorized points. This makes the RBFNs quite sensitive on the training data distribution. 

4.2. Multiple Solutions 

Even for non-redundant manipulators, i.e. for manipulators whose number of joints is less or 
equal to the dimension of the workspace, the inverse kinematics problem has not always a 
single solution. This means that several (quite different) joint coordinates may lead the end-
effector to the same (or very similar) Cartesian workspace coordinates. Thus, inverting the 
input-output pairs to feed them to the supervised learning algorithm, the network will be 
taught to respond in the same (or very similar) input with various (or very different) outputs. 

Such data inconsistencies will, of course, either inhibit learning from converging or result to a 
network that produces a mix of all the associated outputs at the presence of an ‘inconsistent’ 
input. 

So, making a system invertible is not always easy or even possible, and can only be done at 
the cost of adding extra inputs to the network (e.g. configuration information as ‘left shoulder 
elbow above wrist’) or designing a system of more complex architecture and/or learning 
algorithm. 

4.3. Minimization of Misleading Error Criterion 

The neural network will accept as inputs the workspace Cartesian coordinates and produce as 
output the joint coordinates. So, during supervised learning the error propagated will be the 
difference between the target joint values and the output of the network. 

This is quite misleading since our basic aim is to design a system that will minimize the error 
between the workspace coordinate command and the workspace coordinates actually attained 
by the robot. In some circumstances a very small error in the joint coordinates may yield a 
very large error in the workspace coordinates. Equivalently we may say that the system 
trained in such a way, is essentially an open control system in the Cartesian space. 

This way, even a fairly large multi-layer perceptron trained with plain backpropagation is not 
able to reduce the error to zero. This, of course, is not due to the network since when the 
closed form analytical equations of the system can be calculated, supervised learning of this 
network may indeed lead the error virtually to zero. 

However, if we can manage to decrease this ‘misleading’ error criterion enough we can 
expect that the resulting network will perform accordingly well, i.e. the command and 
actually attained Cartesian coordinates will be as close as desirable. 

Some additional problems of the application of ‘plain’ multi-layer perceptron neural networks 
in inverse modeling that do not have their source in the special features of the inverse 
kinematics problem but in the network itself, include the too large training periods required 
by backpropagation and the inefficiency of selecting the initial weights randomly. 



4.4. Learning Algorithm 

The generalized delta rule used by the plain backpropagation learning algorithm to compute 
the gradient needed for the steepest descent, achieves low learning rates in virtually every 
problem. Moreover, the accuracy obtained after the network converges (if it does at all), is 
often too poor for the network to be used to real-world robotic applications. 

The performance of steepest descent methods in the vicinity of a minimum is very poor and 
consists one of the main reasons for its low overall performance. 

4.5. Selection of Initial Weights 

Random selection of initial weights may lead many of the neurons fast to saturation, thus 
having minor contribution to the overall network output. Updates of such neurons by the 
learning algorithm are useless. By selecting initial weights in such way, there exists no way to 
force sufficient number of neurons to the active region of the network in order for them to 
participate in the formulation of the desired mapping. 

5. Neural Inverse Kinematics Problems and their Treatment 
The aforementioned problems need to be treated in order to obtain a system that can 
effectively address the inverse kinematics problem using neural networks so that accuracy, 
robustness, and training time can be acceptable. 

5.1. Generating the Training Patterns 

A typical data producing scheme, would loop though the permissible values of the joint 
angles and calculate their respective workspace coordinates through the forward model to 
produce a set of forward kinematic solution pairs. Figures 2 and 3 contain such data as 
produced by the forward model of the 3R robot described above by looping for each of the 
joints with a constant step. 

Ideally, this set of pairs if reversed would provide sufficient data to a supervised learning 
algorithm for inverse kinematics. But that is not the case for two main reasons: 

• Multiple solution pairs are present in the data set, i.e. a specific point in the workspace 
may be reached by two or more different configurations of the robot, so two or more of the 
inverted pairs could have identical or very similar inputs (workspace coordinates) related 
to two very different outputs (joint coordinates). This would render the data inconsistent. 

• The distribution of training pairs in the input universe after reversing inputs and outputs 
turns out to be not as uniform as the Fig. 2, but rather more like Fig. 3 seriously affecting 
the generalization or even the convergence itself of a neural network that would be trained 
upon them. 

These two problems definitely need to be sorted out for an adequate training set to be 
obtained. 

5.2. Special Architectures and/or Learning Algorithms for Multiple Solutions 

Obviously, for the efficient control of a robot arm, all solutions should be available to the task 
planner when a path is generated for the end-effector in the Cartesian coordinate space. 

Unfortunately, most researchers do not explicitly describe strategies to address the multiple 
solutions problem. Suggested methodologies are usually tested through simulation of a two- 



or three-degrees-of-freedom planar robot limiting the Cartesian or joint coordinate space so as 
to exclude multiple solutions. 

Examples of related work given by are Jordan [15] and Yabuta et al. [16] who suggested 
solutions for the inverse kinematics calculation by neural networks with a special scheme to 
deal with this problem. 

A quite obvious and not too ‘expensive’ approach, uses one neural network module per 
configuration. So, in the case of positioning the 3R robot, we would need four neural network 
modules for inverse kinematics. This is quite reasonable since: 

• Trying to assign multiple tasks to a neural network results in lengthy training periods and 
questionable convergence due to the ‘spatial crosstalk’ phenomenon. This arises when the 
network tries to learn two quite different mappings and mainly results from the distributed 
nature of the representation inside the network. 

• It keeps the system more modular without requiring much more resources. A rather small 
network proves to be quite effective in dealing with each configuration alone. 

• Such an architecture conforms with the ‘mixture of local experts’ architecture as proposed 
by Jacobs et al. [18], where a set of neural networks appropriately coordinated by a so 
called ‘gating network’ are competing to learn different aspects of a problem. 

Peeking at the kinematic properties of the robot at hand, one may deal with separating the 
data corresponding to different configurations by selectively limiting the ranges of the loops 
used to produce them. For example, one could restrict the 3R robot to the left and above 
configuration by imposing the conditions θ2 90> − °  and θ3 90> ° . 

A different way to handle multiple configurations, is to apply the ‘mixture of local experts’ 
architecture (also referred to as ‘modular neural network’ [20]) and let each of the various 
networks specialize to different configurations through competition. Of course, although this 
approach seems to be very attractive since it requires no prior information relatively to the 
manipulator except of the number of configurations, it involves various risks and certainly 
requires more training time since the gating network needs to figure out the different 
configurations by itself so as to assign one neural network per configuration. Moreover, it is 
not appropriate for the case of redundant robots where the number of configurations may be 
infinite. 

5.3. Rendering the Data Distribution More Uniform 

The distribution shown in Fig. 3 concerning the distribution of learning samples in workspace 
coordinates is far from acceptable. What we would like, is to have more uniformity for the 
following reasons: 

• To facilitate the network’s convergence during the learning phase. 

• To improve its generalization capabilities during recall. 

• To be able to efficiently make use of network architectures alternative to multi-layer 
perceptrons, like radial basis function networks by directly assigning the centers the 
Gaussian functions of their prototype layer to coincide with carefully selected 
‘representative’ exemplar patterns. 

Actually, it would be desirable that our input rather than our output data have the distribution 
of Fig. 2. Our advantage is that we have a forward kinematic module available. So, a large 



number of training pairs can be produced off-line. Then, from these data we can explicitly 
select a set whose Cartesian coordinates are matching the desired distribution. 

In the case where a closed form inverse kinematics solution is available, one can make use of 
it to appropriately choose uniformly (with respect to the Cartesian coordinate inputs) 
distributed data. This approach was not adopted so as to retain the generality and not to 
restrict the investigation to robots with closed form inverse kinematics solution. This choice is 
respected throughout the description. 

For the exemplar 3R robot a large number of such data was produced. Then a lattice was 
defined on the Cartesian workspace as shown in Fig. 4. This lattice represents the desirable 
input data distribution. 

 
Figure 4. A lattice defined on the Cartesian workspace of the robot 

   
Figure 5. A more uniform distribution of the patterns of Fig. 3 

Well known algorithms may be then used to isolate the samples that are close to the nodes of 
the lattice. These will become the training set, while the others will be used as the test set. 
Fig. 5 shows the result of such an algorithm for the case of the 3R robot. 

It is obvious that the set of pairs collected with this method may match the desired 
distribution (within the workspace of the robot, of course) in an arbitrary degree depending 
solely on the number of pairs initially produced and the matching criterion imposed to 
classify a pattern as ‘belonging’ to a certain node. From a certain point and further, no 
important advantage is really gained by matching the desired distribution to higher degrees. 

One of the special features of this approach is that the number of training patterns required is 
very limited comparing to the number of test patterns, minimizing thus the required training 
time to achieve a desired error level. 

A different method for the self-generation of training patterns has been proposed by Albus for 
his CMAC [5] and Kuperstein for sensory-motor coordination [6]. According to this method, 
once the network has been sufficiently well ‘bootstrapped’ using randomly generated training 



patterns, it can be used to produce a set of training patterns that approximately yield inputs in 
the correct distribution. More specifically, if we have a set of training inputs (forward model 
outputs), say O, that we would like to be present in the training set, we generate the training 
set using pairs: 

( )o f o f oo t t( ( )), ( ) , o Ot ∈  

where oo( )x  is the observed system output vector when x is applied, and f denotes the 
‘bootstrapped’ network’s response. This way, network performance is improved by bringing 
the distribution of the next training patterns more in line and thus allowing for even better 
network performance. In [6], a 3% accuracy was achieved after about 1200 iterations. 
However, this method does not take advantage of a forward model when available and thus is 
more suited for the cases where training data are either ‘expensive’ or hard to obtain. 

5.4. Data Scaling 

Often, data need to be scaled so as to fit the requirements imposed by the selected neural 
network architecture and/or learning rule. In the case of networks with sigmoid or hard limiter 
transfer function for the output layer, it is obvious that the data should be in accordance. For 
practical applications, a table is created containing the minimum and maximum values for 
each input and output which is used to scale data before presenting them to the network. 

5.5. Learning with an Emulator 

Clearly, to address the problem of minimizing the wrong error function, a way is required to: 

• apply the desired workspace coordinates, say pd , to the network, 

• obtain the joint coordinates, say qa , from the network’s output, 

• apply this action to the forward model to obtain its true output, say pa , and 

• convert the ‘true’ system error, p pd a−  (and not q qd a− ), back into joint errors in 
some way. 

In bibliography [4, 7], it is common that a differentiable model of the forward system transfer 
equations ⎯an ‘emulator’⎯ is used to perform this conversion elegantly. A simple 
implementation of this model uses a multi-layer perceptron. This model network can be 
trained using a ‘plain’ supervised learning scheme since the forward kinematics problem does 
not suffer from multiple solutions. Backpropagation can be used to derive all ∂ ∂p q  required 
with the difference that it will also be used for the input units of the emulator and not only for 
its hidden units. A diagram of such a system is shown in figure 6. 

In [17] the learning algorithm ensures that the cost function used to train the network involves 
the error that is actually observed between the position command and the actual position 
attained by the robot. But on the other hand, the multiple solutions problem is bypassed by 
considering an appropriately constrained two-link planar manipulator. 
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Figure 6. Training a controller using a trained differentiable model of the system 

5.6. Selecting the Network Architecture and the Learning Algorithm 

Many kinds of neural networks can be used to infer the mapping required by inverse 
kinematics. One of the most commonly used networks in robotics is the multi-layer 
perceptron equipped with the backpropagation algorithm while, depending on the specific 
application, an alternative may be provided by recurrent neural networks such as the 
Hopfield. Although radial basis function neural networks possess certain very attractive 
characteristics, their use in robotics and inverse kinematics specifically, is comparatively 
limited. 

The inflexibility of ‘plain’ backpropagation, has partly put it aside especially in the presence 
of more recent and promising learning rules as the delta-bar-delta, quasi-Newton methods, the 
Levenberg-Marquardt algorithm etc., and more efficient (at least for some specific problem 
domains) network architectures as the radial basis function networks. 

Research on methods to accelerate the backpropagation learning algorithm fall into two major 
categories [9]: 

• ad-hoc techniques: These include ideas as using momentum terms and rescaling variables, 
varying the learning rate, etc. 

• standard numerical optimization techniques: The most popular of these used conjugate 
gradient or quasi-Newton methods [8, 10]. Newton’s method can successfully complement 
steepest descent methods but by the cost of increased memory and resource requirements 
since the Hessian needs to be evaluated and inverted, and by the non-triviality of optimally 
switching between steepest descent and Newton’s method. An even more efficient 
technique that is based on the Marquardt algorithm for nonlinear least squares is presented 
in [9]. 

Due to the computational load and memory requirements, the standard numerical optimization 
methods are restricted to multi-layer perceptron networks consisting of no more than a few 
hundred weights. When this is the case, these methods can offer an improvement of about two 
orders of magnitude with respect to the rate of convergence compared to the steepest descent 
technique. 

5.7. Radial Basis Function Networks 

A radial basis function network (RBFN) contains a hidden (prototype) layer of radially 
symmetric and bounded transfer function in its hidden layer. A thorough investigation of 
RBFNs can be found in [20]. 



RBFNs can be used virtually to any problem where a backpropagation network would be 
considered providing advantages like much faster training, formation of better decision 
boundaries, etc. Its main disadvantages, though, are usually the larger number of hidden 
nodes required since backpropagation networks give a more compact distributed 
representation. 

Training a RBFN consists of two phases: 

• A clustering phase, when input data are formed into clusters, using for example a k-means 
algorithm, and updating the weight from the input to the prototype layer so that each 
function is centered at each cluster and its radius is appropriately adjusted. 

• An actual learning phase, where the weights from the prototype to the output layer are 
trained using an error learning rule. 

By the uniform input data distribution that can be achieved using the lattice scheme described 
above, the clustering phase becomes quite safe and fast. Ideally, we could assign one 
prototype node (i.e. one radial function) for each of the lattice nodes. In practice, less nodes 
were found to be needed for the specific application. 

5.8. Geometric Interpretation of Neuron’s Functional Behavior for the Selection of Initial 
Weights 

It is argued in [11], that by systematically selecting the initial values of the adaptive weights, 
the learning time may be reduced. 

In [12], a systematic way for choosing the initial weight values is described that is based on a 
geometric interpretation of the neural network’s functional behavior. The network used is a 
traditional backpropagation neural network with sigmoid transfer functions. The authors 
claim that this method considerably reduced the learning time and even caused the network to 
converge in many cases where the random selection of initial weight failed. 

5.9. Building Prior Information into the Network Design 

Multi-layer perceptrons are proven to be ‘universal approximators’, that is, they are able of 
approximating any function to an arbitrary accuracy. This is their strength but might as well 
be their weakness. 

When addressing a problem category, more efficient solution strategies could be derived by 
making use of all the available a priori knowledge related to the category as long as the 
generality of the approach is sufficiently preserved. 

One of the four commonsense rules suggested by Anderson [19] states that: “Prior 
information and invariances should be built into the design of a neural network, thereby 
simplifying the network design by not having to learn them”. This is the idea behind the 
hierarchical neural networks as proposed by Guez and Selinsky [21]. Observing that some 
nonlinear functions were central to the control of robot dynamics, they trained them into some 
multi-layer perceptrons off-line and then used them as inputs to a final layer that learned to 
appropriately combine them so as to produce the overall solution. 

Most open-chain industrial manipulators, may be broken down to two kinematic sub-chains, 
the first being primarily responsible for positioning the end-effector while the second for 
orientating it. Thus, the inverse kinematic problem for these manipulators may be broken 
down to two simpler ones, namely calculating the joints coordinates for the first sub-chain 
based on the desired Cartesian position of the end-effector, and calculating the joints 



coordinates for the second sub-chain based on the desired orientation of the end-effector and 
the joint coordinate values obtained for the first sub-chain. 

Moreover, the kinematic articulation of the second sub-chain usually coincides with the 
definition of Euler angles, so in some cases the second part could consist of just a few 
straightforward geometric calculations instead of a neural network. 

For a typical industrial manipulator consisting of 6 degrees of freedom (joints), this means 
that a 6-by-6 problem is broken down to two 3-by-3 problems. It is obvious that the 
complexity of the former is considerably higher than the complexity of the latter. 

The 3R non-planar robot that served as an example up to now, is actually the basis for many 
of the common industrial robots. It is kinematically identical to the first three DOFs of the 
PUMA, the CLOOS and other commonly used manipulators. Moreover, the solution for their 
last 3 DOFs is trivial since it reduces to finding a set of Euler angles from an 3×3 orientation 
matrix. So, since the decomposition described above is applicable to these robots, this 
discussion is also valid for them too. Restricting our focus to the first three DOFs, the 
multiple joint solutions that exist in the general case for an arbitrary positioning of the robot 
reduce to four, namely left/right shoulder and above/below arm. 

It is quite easy to notice that different joint variables depend on different Cartesian 
coordinates. Namely, for the left and above configuration, θ1  depends solely on x and y (not 
on z) and θ2 , θ3  seem to depend on all x, y, and z. Actually, after a closer look, θ 2  and θ3  
really depend on the distance of the end-effector from the z axis of the world coordinate 

system and not by x and y explicitly. That is, they depend on z and r x y= +2 2  (i.e. two 
instead of three inputs). 

So, instead of letting the network figure out this kind of dependency, we may hardwire this in 
by supplying r as an additional input. A similar approach was used by Schöneburg et al. [22] 
where except the Cartesian coordinates of the target end-effector position they also provided 
the network with additional inputs as the sine and cosine of the first and second axes angles. 

Undertaking the approach adopted in [12] that uses one neural network per joint so as to 
eliminate ‘spatial crosstalk’, we may end up with three small neural networks with input-
output spaces of 2×1 each. Thus a major decomposition has taken place solely based on 
observations of the kinematic structure of the robot at hand. Similar simplifying observations 
can be made for most manipulators. 

Training such small neural networks is quite trivial while training 3×3 is certainly more 
demanding especially when more than one hidden layers are required, which is the usual case. 
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Figure 7. Connecting the two networks 



5.10. Pruning the Network 

Pruning is a concept introduced by Rumelhart that attempts to minimize both network 
complexity and square error over a training set. Pruning provides the means for reducing the 
‘overfitting’ phenomenon since a network of minimal complexity that performs well on a 
training set is expected to generalize better than a more complex one. The simplest way of 
minimizing a network is by removing the relatively small weights. 

6. Fuzzy and Neurofuzzy Approach to Inverse Kinematics 
The application of the fuzzy methodology will be shown by considering an articulated 3-DOF 
robotic manipulator (Fig. 1). In this case Eq. (1) is specialized as: 

p a c c a c cx = +2 1 2 3 1 23  (5a) 

p a s c a s cy = +2 1 2 3 1 23  (5b) 

p a a s a sz = + +1 2 2 3 23  (5c) 

where 

c q s qi i i i= =cos , sin     (i = 1,2),  c q q p p px y z
T

23 1 2= + =cos( ), [ , , ]   p  

in the position of the robot tip in the Cartesian space; a a a1 2 3, ,  are the lengths of the links of 
the robot, and qi (i = 1,2,3)  are the angles of the links as shown in Fig. 1. The analytical 
solution of the inverse kinematics problem is given by [38, 39]: 

q a
p
p

q a
p
p

x

y

x

y
1 12 2= =

−
−

tan [ ] tan [ ]  or       (6a) 

q a
p a a a c a p p

p a a s a a c p p

z x y

z x y
2

1 2 3 3 3
2 2

1 3 3 2 3 3
2 2

2=
− + +

− ± + +
tan [

( )( )

( ) ( )
]

m
 (6b) 

q a
a a p a p p a a

p a p p a a
z x y

z x y
3

2
2

3
2

1
2 2 2

2
2

3
2

1
2 2 2

2
2

3
22

4
=

± − − + + − −

− + + − −
tan [

[( ) ]

( )
]  (6c) 

which reveal the existence of multiple solutions for qi  (i=1,2,3). 

The linearized version of (6a-c) about some nominal configuration has the following matrix 
form: 
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where δq  are a small variations ( )δqi <<1 , and 
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Following the results of [34-37] all variables δ δ δ δ δ δp p p q q qx y z, , , ,1 2 3  and  are fuzzified 
using the following seven fuzzy sets(although for higher accuracy more fuzzy sets might be 
used): 

 
PL Positive Large 
PM Positive Medium 
PS Positive Small 
Z Zero 
NS Negative Small 
NM Negative Medium 
NL Negative Large 

 

Since Eq. (7) is a linear model, the superposition principle is applicable for the fuzzy 
associative memory (FAM) of the robot kinematics. 

In [37] the following rules were used to determine δq1 for a given δ δ δp p px y z,   and . 

Table 1: Fuzzy rules for the linearized kinematics 

 δpx  
 δq1  NL NM NS Z PS PM PL 
 NL PL PM PS Z NS NM NL 
 NM PL PM PS Z NS NM NL 



 NS PL PM PS Z NS NM NL 
p i1  Z Z Z Z Z Z Z Z 

 PS NL NM NS Z PS PM PL 
 PM NL NM NS Z PS PM PL 
 PL NL NM NS Z PS PM PL 

 

The entries of the above fuzzy table (FAM) can be obtained via inspection of a three-
dimensional graph. Similar FAMs have to be constructed for p i2  and p i3  (i=1,2,3) in order to 
determine δq1. Each entry of the FAM corresponds to a rule of the type: 

IF p p qi x   is NM) AND (   is PS)  THEN    is  NS( 1 1δ δ  

The overall FAM (fuzzy look-up table) consists of 49 rules, and therefore for p i1 , p i2  and 
p i3  one needs a total of 147 rules for determining the inverse kinematics solution, which 

implies a very high computational load. Therefore we must look for methods of reducing the 
computational effort. The above technique, although theoretically correct, is not suitable for 
automatically solving the inverse kinematics problem, since it needs the construction of a 3-D 
graphical representation of the FAM which is a difficult job. 

An alternative method consists in collecting a set of training samples from measurements of 
qi  (i=1,2,3) obtained by moving the robot to a set of different positions px , py  and pz  (Fig. 
8). 
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Figure 8. Neurofuzzy structure for robot inverse kinematics; qd :  desired joint angle vector, 

qa:  joint angle vector actually provided by the neurofuzzy cell 

Then, a neurofuzzy network can be trained with a sufficient number of data points [40-42]. 
Here a number of issues similar to those studied in sections 4 and 5 may be considered. In 
particular, the membership functions and the network weights have to be adjusted so as to 
obtain the desired minimum error. In practice, instead of moving the actual robot to different 
positions for generating the required training data, one can use the forward kinematic 
equations which can be easily and uniquely computed. This has the additional advantage of 
selecting the desired angles at the design phase and producing a unique mapping between the 
angles and the corresponding Cartesian positions. 

7. Simulation Results 
Standard matrix operations may be used to calculate the forward kinematics of the any robot 
using the D-H methodology. Assuming that the kinematic parameters of the robot are 
accurate we may relay on it to produce valid workspace coordinate and joint coordinate pairs. 



Data has been pre-processed following the techniques as described in the previous sections 
(figures 2, 3, 4, and 5 depict the various steps of the actual simulation). 

RBFNs were used as the underlying neural network model. Our choice was to start with 
relatively large networks and to prune, after learning had converged, the nodes that less 
participated in the output, i.e. the prototype nodes whose weight received small values 
comparing to the values of the others. 

The approach undertaken to face the spatial crosstalk and the multiple solutions as described 
above, led to the overall system architecture illustrated in Fig. 9. 
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Figure 9. The overall system architecture 

Due to the efficiency of RBFNs and the adequate data pre-processing, the networks 
converged quite fast. Training was stopped for each network when error started to decrease 
very slowly. Pruning took place by periodically removing the weights whose magnitudes 
were below a threshold percent of the maximum of the absolute magnitude of all the weights 
appearing in the network. In some cases, the results of pruning were remarkable. 

The final system error managed to drop under 2%. By using more data produced by the 
forward model, a more dense lattice during preprocessing, and more hidden neurons at the 
prototype layer the error may be further decreased. 

The corresponding results obtained by the neurofuzzy system proposed in [42], with the 
input-output variables quantized in five intervals and an MLP with one hidden layer, showed 
an RMS error less than 2%. 

8. Conclusions 
A general architecture along with related techniques to face the difficulties of the application 
of neural networks to the inverse robot kinematics problem were presented. An algorithm was 
described that may be used to improve the quality of the training pairs and to make possible 
and much more efficient the use of neural networks alternative to the multilayered 
perceptrons and to training algorithms alternative to the backpropagation of error. Simulation 
results were presented for the case of a 3R non-planar robot arm with a very common 



kinematic structure. Throughout the discussion the robot was assumed to be calibrated. If this 
is not so, the same architecture still proves to be very efficient. 

Two fuzzy logic methods were examined via a FAM and a neurofuzzy structure. It was 
assumed that knowledge of the forward kinematics of the robot at hand was available, 
through, for example, the D-H kinematic parameters which were assumed to be known and 
accurate. However, no knowledge was assumed relatively to the inverse kinematics of the 
robot at hand. So this approach is quite generic and thus applicable to a wide range of robotic 
manipulators. If the D-H model is used to obtain forward kinematics solution pairs then it is 
implicitly assumed that the robot is calibrated. If that is not the case the actual robot along 
with a positioning sensor will have to be used to produce the required data. 
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