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ABSTRACT 
In this paper, some fundamental issues of modern multi-agent robot architectures are discussed. It is 
argued that the multi-agent approach provides the necessary flexibility and adaptivity for such 
architectures, and that the primary issue in designing a multi-agent robot architecture is the selection 
of the granularity level, i.e., the decision on decomposing the overall desired functionality physically 
or across tasks. It is explained why at the various system levels different decomposition grains are 
needed; physical components, tasks or hybrid. This granularity decision is made on the basis of 
specific criteria of control localization, knowledge decoupling and interaction minimization so as to 
identify the decision points of the overall functionality. The above criteria lead to a dual 
composition-decomposition relation, which provides a good basis for system scaling. The paper 
specializes the discussion to a proposed neuro-fuzzy multi-agent architecture, which is then applied 
to design the local path planning system of an indoor mobile robot. 
Keywords: Multi-agent robot systems; distributed artificial intelligence; robotic modeling; 
decomposition; neuro-fuzzy systems; fuzzy agents; neural agents; robot path planning. 

1. Introduction 

In the past, robots have been used in industrial contexts to perform tasks that necessitated 
high precision and accuracy, such as assembly, welding and other mechanical operations. 
During the last decade, however, research trends in industrial robotic systems shifted 
toward system integration, production flexibility, process adaptivity to unforeseen events, 
uncertainty handling and fault-tolerance [3, 7, 18, 27, 29, 34]. The concept of cellular 
manufacturing has emerged as a unifying paradigm that captures the need for product-
oriented rather than process-oriented layout of the production plant [29]. On the other 
hand, the relatively recent field of service robotics [42], demonstrates the same needs for 
enhanced autonomy, behavioral adaptivity, flexibility and fault-tolerance, to cope with 
tasks such as indoor cleaning, supervision and inspection. 



With modern robots being assigned increasingly more difficult tasks in decreasingly 
structured and certain environments, the demand for autonomy has therefore become 
more and more imperative. The traditional sense-model-plan-act paradigm can no longer 
cope with such demands necessitating a different, more robust design methodology. The 
key properties that a modern, relatively autonomous, robotic system must demonstrate 
seem to be flexibility and adaptivity. 
Flexibility involves the possibility to reinitialize or reconfigure the system, or a 
component of it, on a new set of functional/operational demands, while adaptivity 
supports the ability to prevent or recover from failures of various types. Flexibility 
therefore concerns mainly the connection of a component to the other components of the 
same system, while adaptivity refers to its local self-sustenance [44]. For the case of a 
single-robot system, those principles apply to the robot’s architecture, so that flexibility is 
the result of architectural modularity, whereas adaptivity corresponds to individual 
component completeness and plasticity. Note that the same objectives of flexibility and 
adaptivity hold for higher-order robotic systems, as well, such as multi-robot production 
plants or service groups. 
The above have led to a reconsideration of the two fundamental assumptions of 
conventional robotic architectures. The first is the assumption of almost perfect 
knowledge, according to which all or almost all of the parameters that affect the 
operation and the performance of the robot are known in advance. For example, transport 
scheduling presupposes that the quantities, types, etc. of objects are known, as well as the 
number, positions and I/O flows of conveyor belts, temporary stockage platforms, bins 
etc. Moreover, this assumption states that, the outcome of any action, at any moment, is 
correct and predictable. The second is the centralized-decision assumption, according to 
which, and since there is almost perfect knowledge about the task, the designer of the 
system can derive a method of controlling it to meet the required operational goals, or 
else, make decisions in advance about the operation of the system. 

The first assumption has been relaxed over the last decade since no complete information 
about the overall task is available in advance, or, if it is, using it to derive a perfect 
decision (such as a schedule or a plan) is often intractable. The optimization principle has 
therefore lost ground in favor of more qualitative and heuristic techniques that may 
manipulate less formal knowledge about the process. Those techniques are basically 
artificial intelligence techniques and their integration into robotic systems [1, 17, 31] has 
paralleled the emergence of the intelligent control field that combined conventional 
control methodologies with artificial intelligence techniques [22]. 

On the other hand, doubts on the centralized decision have only recently begun to arise 
and find their way into the scientific arena [10, 13, 28] (a marginally relevant effort has 
also been presented by Wang & Beni [33]). Some robotic tasks that involve multiple 
goals and subtasks may therefore be modeled in terms of concurrently acting cooperative 
or competitive components, usually called agents. In such systems, decisions have to be 
made separately at almost every point during operation of the system, since the exact 
overall state cannot be thoroughly known in advance and long-term planning/scheduling 
soon becomes obsolete. Local rules or heuristics at various points become more 
important and complicated analytical pre-processing loses value. 
Introducing autonomous agents at those decision/redecision points — i.e. points where 
some local, intelligent, or for that purpose autonomous, “processing” is necessary — 



looks beneficial. The advantageous consequences of such decomposition of the overall 
task into a number of interacting agents are ease of design (through complexity 
multiplication during synthesis) and reconfigurability/scalability. 
In the next two sections we give a brief overview of distributed artificial intelligence and 
multi-agent systems and we discuss the suitability of multi-agent systems techniques for 
robotic architectures and more specifically for systems with high demands of flexibility 
and adaptivity. In section 4, we present a few examples and we argue that for different 
purposes we need different decomposition grains (physical, task-based or hybrid). We 
also argue that this granularity decision should be driven by the criteria of control 
localization, knowledge decoupling and interaction minimization, so as to identify the 
decision points of the overall task. Those criteria define a dual composition and 
decomposition relation that appears as a good substrate for architecture scaling. In section 
5, the multi-agent concept is used in the sense of independent intentional modules 
working in parallel and responding to their environment, as they perceive it. The overall 
system architecture is then defined as a set of competing agents to each one of which an 
activation level is assigned which gives an indication of the relevance of the agent to a 
particular situation. The higher the activation level, the more the agent will influence the 
overall behavior of the system. In section 6, the principal properties of the multi-agent 
architecture are illustrated in a local path planning system of an indoors mobile robot in 
unknown environments. This is a very representative case of a class of problems where 
both numerical and linguistic data are available and must be suitably blended and used 
under a common platform [36, 37, 41]. Finally, concluding remarks are given in section 
7. 

2. Multi-Agent Systems And Distributed Artificial Intelligence 

Distributed artificial intelligence [4, 15, 17] is the sub-field of artificial intelligence that is 
concerned with distributed rather than mono-agent systems and has been traditionally 
subdivided into distributed problem-solving (DPS) and multi-agent systems (MAS) [7, 8, 
12]. The first domain emphasizes in solving a particular problem by distributing it among 
a number of modules (or nodes) that cooperate by sharing knowledge/solutions etc., 
while the second deals with coordinating intelligent behavior among a collection of 
(possibly preexisting) autonomous intelligent agents. This partition of the field is no 
longer valid, however, since traditionally multi-agent systems like actors and open 
systems have evolved into reactive (and intentional) multi-agent systems, so that it is now 
generally believed that conventional distributed artificial intelligence is a sub-domain of 
multi-agent systems. Another neighboring domain usually included in DAI, although it is 
a historical predecessor rather than a typical exemplar of it, is the blackboard systems 
[11, 16]. Blackboard systems have evolved from production rule systems to systems of 
large knowledge sources that communicate and cooperate via a shared structure (called a 
blackboard) on which they post pieces of work, hypotheses etc. The themes of DAI and 
MAS research include task description, decomposition, distribution and allocation, 
interaction and organization, coherence and coordination, modeling of other agents, inter-
agent disparities, such as uncertainty and conflict etc. 
First, let us look closer into the notion of “agent”. According to Ferber [12], an agent is 
an autonomous entity that is allowed to coexist with other agents with whom it 
communicates directly or indirectly while in pursuit of its local goals. The global goal is 



achieved as a by-product of the concurrent operation of individual agents. According to 
this view, an agent is more than simply a component in a DAI system. What makes the 
difference is its autonomy: an agent is self-contained and autonomous in the sense that it 
tries to achieve its own local goals which are not necessarily directly correlated with the 
global one, or else with the “purpose” of the system. As its name denotes, an agent acts 
for somebody else’s sake and on his/her behalf and is only considered an agent because 
an external, third observer may attribute to it some intentionality — which is the very 
essence of autonomy as argued in [6, 32]. Using the term “agent” also implies a common 
representation level. Since the global goal is to be achieved as a side-effect of the 
operation of individual agents, the definition of agents should be such, that interactions 
between them are represented in a uniform way in the system, using a shared interaction 
medium, although agents themselves are allowed to be heterogeneous. For example, in 
the case of closed producer-consumer system, what is important is the interaction 
between producers and consumers — production flow and regulation, saturation, 
bottlenecks etc. — and not the degree of sophistication of the internal structure of agents 
(actually, this degree may vary widely). 

Now, why should we need to agentify some problems? Or, when do we need to introduce 
multiple agents, of what types and how many? The key appears to be the achievement of 
the overall goal as a by-product of the individual agents’ operation. Some phenomena —
 or, in design terms, some processes — can be thought of more naturally as collections of 
individual simple interacting processes, rather than a single complex one. Since each of 
these sub-processes has its own “state space”, the state of the overall system is 
“distributed” over the agents and the overall state space may grow exponentially on the 
number of sub-processes. However, and provided that the right representation and 
management tools exist, modeling the individual processes and their interactions provides 
a methodological advantage over mono-agent modeling: complexity is hidden during 
analysis and multiplied during synthesis. This allows, for instance, for better scaling by 
adding new agents or new interactions or both, and also gives room to deeper insight into 
observable complex phenomena that may be of scientific rather than 
engineering/technological value, such as the “emergent” cooperation of locally 
competitive agents. Multi-agent modeling constitutes therefore the complexity 
management tool for processes that involve multiple identifiable entities loosely-coupled 
through a shared interaction medium. 

3. Multi-Agent Systems In Robotic Modeling 

Robotic tasks by definition involve multiple goals, local objectives and background tasks 
and so can at first glance be considered as good candidates for multi-agent modeling. 
However, and according to the principles of complexity management and autonomy as 
observable intentionality, multi-agent modeling will only be profitably applicable, if the 
individual entities (or agents) considered are more than mere, “blind” input-output 
passive devices (or else if they appear intentional) and their interactions less static. As 
pointed out in the introduction, this is precisely the case of modern robotic tasks: 
decisions have to be made separately at almost every point during operation of the 
system, since the exact overall state cannot be thoroughly known in advance and long-
term planning/scheduling soon becomes obsolete. Local rules or heuristics at various 
points become more important and complicated analytical pre-processing loses value. 



Introducing agents at those decision/re-decision points looks beneficial. 

As explained before, the consequences of decomposing the task into a number of 
interacting agents are ease of design (through complexity multiplication during synthesis) 
and reconfigurability/scalability. Introducing autonomous agents at individual decision 
points solves the adaptivity problem, since all events are processed independently of 
whether they are expected and to what degree. On the other side, scalability responds to 
the flexibility objective — local decision rules or agents may be modified almost 
independently of other agents and new decision points may be added relatively easily. 
From the above, it is clear that ease of design and reconfigurability are coupled objectives 
and a methodology that responds to the first one is also valid for the second and vice 
versa. 

The fundamental principle behind robotic architectures modeling as multi-agent systems 
is to keep things as simple as possible, so as to better control them and be able to get rid 
of them when they go out-of-date. It is interactions between such simple agents that will 
account for observable complexity. This fundamental principle underlies the behavior-
based robotic architectures [2, 5, 30], whose functionality emerges out of the 
simultaneous operation and interaction of many independent modules or agents, called 
“behaviors”. The issues of modularity, reconfigurability and behavior combination in this 
context have been discussed in [21, 23, 43]. 

Various exemplar architectures have been proposed to model the desired decomposition 
in the field of autonomous robotics, but two have attracted the most interest and research. 
On the one hand, the so-called hierarchical architectures map different modules to 
different functionalities based on the various tasks the robot is involved into (e.g. world 
modeling, path planning, motion control, etc.) which are then divided into high level 
layers (model & plan) and low level layers (sense & execute) and act asynchronously. On 
the other hand, behavior-based architectures employ simple but complete units capable of 
exhibiting “elementary behavior” as their building blocks (e.g. moving towards a target, 
avoiding obstacles, following a corridor wall, etc.) with the sophisticated overall behavior 
emerging from the interaction and competition of such units. Hybrid techniques resulting 
from the combination of a hierarchical overall organization with a behavior-based 
decomposition of the execution level are gaining increasing interest. 
Multi-agent modeling is therefore possible and beneficial for all those robotic tasks that 
impose heavy flexibility and adaptivity constraints and for which precise analytical 
description is generally problematic. The example in sections 5 and 6 refers to 
navigational control, which belongs to the above category. 

4. Decomposition In Multi-Agent Systems 

The notion of decomposition into simpler parts is rather old. It has been used to express a 
“complex” whole on the grounds of “simpler” superimposed constituents. Multi-agent 
systems provide the framework to port the decomposition principle from the combination 
of passive and isolated constituents to a “population” of active and interacting 
(“intelligent”) entities. 
The central issue of the design of a multi-agent robotic architecture is the choice of the 
granularity level, or else, the identification of the appropriate law of task decomposition 



into agents. To comply with the principles of individual agent autonomy and 
minimization of interaction complexity, as well as with the objectives of process 
adaptivity and flexibility, the notion of decision points has been introduced. A decision 
point is a point in the process where some local intelligent, or for that purpose 
autonomous, “processing” is necessary to ensure validity of the undertaken action. This 
processing takes as input the current perceived state of the process (actually, since this 
state is distributed across all agents, it needs only consider the states of a few “relevant” 
or “adjacent” agents) and outputs/executes the appropriate action according to its internal 
rules/heuristics. Those rules and heuristics are in turn allowed to change throughout 
execution, or else the agent is allowed to be adaptive. This operation generally passes 
directly or indirectly control to an adjacent decision point. Furthermore, agents 
corresponding to different decision points are allowed to execute concurrently on an 
event-driven basis. What is considered as a decision point during analysis, is 
implemented as a separate agent during synthesis. 
In the example of sections 5 and 6, we assume a multi-agent system designed for the 
navigation of an autonomous mobile robot, where each agent is responsible for a 
primitive functionality, such as obstacle avoidance, target following etc., and the exact 
environment of each agent at any moment can not be known in advance. Although the 
agents are organized in a single layer and their interactions are minimal, the behavior of 
the system resulting from their synthesis proves to be “sophisticated” enough to address 
the undertaken task successfully. 

4.1. Physical Decomposition 

One family of multi-agent robotic architectures assume a physical decomposition, i.e., 
one where each agent corresponds to a physical component of the robot: force sensors, 
sonars, wheel motors etc. Examples of this approach may be found in the earlier 
behavior-based literature, where different behaviors are, implicitly or explicitly, 
managing disjoint sets of sensors and actuators [2, 5]. The characteristic of these 
architectures is that they encompass a large number of sensors that may be functionally 
grouped, and those sensor groups are disjoint. This issue is discussed in [14]. This 
approach has been found useful whenever assessing the performance of a variety of 
physical sensor settings. Substantial improvements in the performance of the robot have 
been found to translate to minimal and smooth changes in the robots’ physical apparatus, 
so that the system can be said to scale easily on the number of sensors. This approach is 
therefore beneficial when we can include dedicated sensors for each “functional” 
specification and does not necessitate any classification of perceptions. 

4.2. Task-Based Decomposition 

A second more modern family of multi-agent robotic architectures assume a task-based 
decomposition, i.e., one where each agent corresponds to a task or functional component 
of the robot: explore, follow fellow robots, recharge batteries etc. Typical examples of 
this approach are the behavioral systems that aim to reproduce on a simulated or real 
robot the behavioral sequences of a real animal (for instance, [38, 39, 40]). Other 
examples of the same approach may be found in the explorer robots literature [23, 31]. 
The important feature of this approach is that all arbitration between simultaneously 
active behaviors (or tasks) may be performed at the “motivational” level, i.e. using a 



uniform measure of preference for each task, usually called the motivation or the 
activation level of the task. Each task uses as resources some of the robot’s physical 
components, i.e., sensors and actuators, and only a few of these components exist, that 
are shared among tasks. 

This approach is suggested whenever two architectural conditions hold: 

• Passing control and data from task to task is straightforward, if necessary, i.e., it does 
not necessitate too complex decisions, and 

• Reconfiguring the overall architecture involves adding/removing tasks, while the 
sensors and actuators configuration does not change significantly. 

Besides, this architectural arrangement allows for evaluation of architectures at the task 
or operational level, for instance, if we want to assess the performance of various 
exploration algorithms with respect to certain environmental conditions. 

4.3. Hybrid Decomposition 

Finally, a third family of multi-agent robotic architectures assume a hybrid 
decomposition, i.e., one where each agent may correspond to a functional task or a 
physical component group of the robot (sonars, recharge batteries etc.) and may be 
recursively composed by other agents of a lower level. Examples of this hybrid and 
hierarchical approach may be found in [25, 19]. Rather than reasoning on the nature of 
“structures” and “functions”, this approach emphasizes on interactions between agents 
and attempts to decompose so that they are naturally “represented” in that granularity 
level. For example, a sonar sensing system may be included in a localization agent where 
it is used passively or considered an agent by itself if its role is to emit a critical situation 
warning, such as a dead-end or a collision. In [43], we called this principle the 
incrementality principle, and we argued that this is the vehicle that will allow a designer 
to pass forth and back from agent specifications to operational objectives at the 
architectural level. 

4.4. Decomposition Criteria 

Looking closer at the above examples, it becomes obvious that what drives the 
decomposition (physical, task-based or hybrid) is the nature of the correspondence 
between physical and functional components. For a simple correspondence of the type 
{many sensors ⇒ one task}, or {one sensor ⇒ many tasks}, it is straightforward to use 
either a task-based or a physical-based decomposition. When this correspondence is 
complex {many sensors ⇒ many tasks}, it is preferable to decompose in a hybrid way. 
Often enough, it is also beneficial to decompose at multiple levels, i.e., hierarchically, if 
that simplifies the description and the design of the various agents and the interactions 
between them.  

In all cases, the decomposition depends primarily on a correct identification of the 
decision points of the overall robotic task(s). In this sense, the usual parallelisms between 
physical and structural decomposition and between task-based and functional 



decomposition become irrelevant and displaced: actually, tasks are not less structural and 
more functional components than sensors or actuators. In either case, the task or the 
physical component is the right structural or else representational grain, i.e., the one that 
allow the multi-agent system to exhibit ease of design and reconfigurability, as explained 
in section 2. Note that behind the choice of such a structural grain lies an implicit 
operational rule: that of maximizing individual agents’ activity by distributing the overall 
process over a set of agents capable and “willing” to execute concurrently. Another 
important observation is that speaking about decision points and structural grains allows 
for more natural integration of hybrid representations at different levels of the 
architecture. Decomposition is therefore driven by the following criteria: 

• Control localization. Identification and isolation of decision points means 
identification of all those entities that need some sophisticated self-control, where 
sophistication is in comparison with the entities’ connections (interactions) with 
other entities; an example is a critical situation detection module. 

• Knowledge decoupling. A decision point is one where some sort of “knowledge” is 
concentrated. Identification of individual decision points implies that their local 
“knowledge bases” are orthogonal or disjoint or, at least, minimally overlapping; an 
example is the decoupling between a localization and an obstacle avoidance module. 

• Interaction minimization. The above two criteria imply that decomposition should be 
such that interactions between agents be minimized: we want agents to work most of 
the time and interact/communicate only occasionally and not vice versa. From the 
above, it also follows that the knowledge directly or indirectly communicated from 
agent to agent is of limited type and extent — in some architectures, such as the one 
in [2], there is no direct communication between agents, but only indirect through the 
world. 

Note finally that the choice of the right decomposition grain for a system is not 
independent of the various representations used. For instance, an environmental property 
that can be immediately sensed, may be fed directly to a number of interested agents, 
whereas if it needs to be deduced by other sensed properties, a special property-detection 
agent becomes necessary. 

4.5. Duality between Decomposition and Composition 

The previous decomposition criteria may be applicable at many directions. However, 
applicability alone does not ensure suitability to specific contexts. What is also necessary 
is the choice of the particular direction of application and this is driven by the specific 
reconfigurability needs: task-based decomposition generally scales on the number of 
tasks, while physical decomposition scales on the number of physical components, as 
already stated. Hybrid decomposition may scale on the number of any of the different 
agent types. In all cases, scaling is only possible if interactions are well understood and 
explicitly modeled. Given the flexibility and adaptivity needs of the robotic architectures, 
it becomes therefore obvious that decomposition should be such as to allow re-
composition or reconfiguration later on and the exact direction of reconfiguration is 
specific-process-dependent. Moreover, such a principled decomposition or design allows 
a better understanding of the resulting system and a better control of its operation, so that 



not only the reconfiguration will be possible, but it will be prompted if necessary by the 
performance of the system itself. As a consequence, decomposition based on the three 
above criteria and a set of reconfiguration directions becomes an inversible relation. 

5. A Neuro-Fuzzy Multi-Agent System 

Based on the conversation from the previous sections, we may summarize some 
indicative functional characteristics that qualify a module as an agent: 
• concurrently acting self-contained and autonomous/intentionality entities 
• pursuit local goals 
• able of taking distributed decisions on the grounds of local rules or heuristics 
• allowed to communicate directly or indirectly in a cooperative or competitive fashion 
On the other hand, every multi-agent system should, at least, provide the means for: 
• agent communication 
• agent coordination 
• conflict resolution 
In this section we provide a blueprint for a multi-agent system consisting of neural and 
fuzzy agents. First we motivate the use of fuzzy- and neural-based agents as general 
purpose building blocks and then we present some details on the overall system 
architecture to conclude with some considerations relatively to its training and on-line 
adaptation. The next section will specialize the system to address the path planning 
problem. 

5.1. Fuzzy and Neural Agents 

Relaxing, for a moment, the strict AI framework respected up to now, we may consider a 
fuzzy rule itself to be a rough, primitive form of an agent; it encapsulates a fragment of 
(often heuristic) knowledge which allows it to take local decisions. Moreover, fuzzy 
reasoning provides a well established framework to control collections of rules for 
inference and decision support purposes. Even in the case that a single fuzzy rule cannot 
capture the complex behavior that an agent needs to exhibit for some applications, a set 
of such rules can provide the required expressiveness. Furthermore, there exist good 
arguments in adopting fuzzy logic for the underlying implementation of agents: 
• fuzzy logic provides the simplest way to translate heuristic rules to a computational 

algorithm, 
• the system needs to deal with the uncertainty introduced by the sensor measurements, 
• efficient algorithms exist to train and adapt fuzzy rule-based systems using numerical 

data. 
An important characteristic of an agent based on fuzzy techniques, henceforth called 
fuzzy agent,  is its ability to automatically provide a measure of its “applicability” at the 
specific system state as it perceives it by means of its so-called activation level. The 
activation level is a measure of the consistency of a fuzzy rule premise with the currently 
observed situation. 
On the other hand, neural networks are well established as associative memory modules 



capable of formulating nonlinear input-output mappings. Through their inherent 
generalization capabilities they may perform inference on the basis of exemplar training 
patterns. If a required behavior cannot be described in a structured manner —e.g. via 
causal production rules, or an algorithmic formalization, etc.— but only on the basis of 
stimuli-response pairs, neural networks are an excellent candidate for the underlying 
agent implementation. 

5.2. The Proposed Architecture 

A single layer multi-agent system that can host fuzzy, neural, algorithmic, or any other 
kind of agents, has the form shown in Fig. 1. Thick arrows were used to stress the fact 
that the data circulating into the system may vary significantly from scalar values to 
fuzzy sets, vectors, etc. 

Agent 1

Agent 2

Agent m

Behavior
Coordinator

Merging

 

Fig. 1. The structure of the agent-based system 

The main task of the behavior coordinator and the merging module is to resolve possible 
conflicts among the different agent outputs stemming from inconsistency in their design, 
graceful competition among the agents, or any other reason. To this end, the behavior 
coordinator can assign degrees of relevance to the output of each rule according to the 
current system state and the state of the world as perceived. 
One thing that is not obvious from the figure, is that not all agents are required to make 
use of sensory data; some may use only information stored on an internal shared 
structured (e.g. a memory) and some may use no information at all capturing some fixed, 
constant behavior that the system needs to exhibit. However, the contribution of all 
agents to the output is indirectly affected by the current system state via the degrees of 
relevance assigned by the behavior coordinator. Finally the behavior coordinator itself is 
permitted to make use of the internal shared structured. 

5.3. System Training 

0The Back-Propagation Algorithm 

One of the most handy representation schemes of a system, an algorithm, or a process is 
that of a feedforward network. A very important reason to use such a representation is 
that there is already a training algorithm available for such networks: the back-
propagation algorithm (BP). Although the BP algorithm has its roots in the field of 
neural networks, its basic concepts may be applied to any feedforward neural network. 



What we need to have available in order to apply the BP algorithm is an expression for 
the error at the network's output layer, usually in the terms of the actual to desired output 
difference. This error is then propagated backwards, towards the input layer. Since the BP 
algorithm is a gradient descent algorithm, it is guaranteed to decrease the system's output 
error and to drive the system to a (local) minimum state. 
Applying the BP algorithm to the network representation of the system is straightforward 
and provides the means to adjust all its model parameters. There are many choices for the 
selection of the system parameters to be adjusted. The first candidates for adjustment are, 
of course, the relevance of the agents. 

1The Adjustable System Parameters 

Up to now, we made no assumption concerning neither the way the agents (i.e. the rules 
of behavior) are implemented nor the behavior coordinator (i.e. the rules' relevance under 
the specific circumstances). With no loss of generality we may assume that the relevance 
degrees of the agents are implemented using neural networks whose generalization 
abilities prove to offer an important advantage. In most cases, multi layer perceptrons 
(MLPs) with a small number of hidden units are a fair choice. It should be pointed out 
that the problem of training the overall system is not just transferred to the one of training 
these MLPs. Remember that the system's inputs and output may be not only numbers but 
also fuzzy sets while relevance degrees and the MLPs to implement them are trained 
using solely numerals. 
Although the implementation of the agents themselves may take place through various 
techniques, fuzzy logic seems to provide an excellent framework when a priori 
knowledge is to be inserted to the system or when knowledge is to be extracted by the 
system after the learning phase is completed. Fuzzy logic may easily incorporate human 
knowledge in linguistic form, filter the noise from the inputs, compensate for 
environmental uncertainties or sensor failures etc. So, fuzzy agents are usually a very 
efficient choice. 
For the case of fuzzy agents, trainable system parameters are the parameters of the 
membership functions of the antecedent and decedent part of the rules. E.g. for Gaussian 
membership functions, these could be their center point, center value, spread, etc. 

2Training Equations 

Assume that the error at the output layer of the system is calculated by an expression of 
the form: 

[ ]e f d= −1
2

2( )x  

where: e is the error as measured at the output layer, x is the system's input vector, f(x) 
denotes the actual system output, and d is the desired system output as provided by a 
supervising module. 
A training rule for an adjustable system parameter, say p, will have the following form: 
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where a is a constant stepsize representing the learning rate, and k=0,1,2,.... 



3On-line Adaptation 

It is clear that the BP algorithm in the form considered above, is only applicable for off-
line training where all the training samples are available and the derivatives are known. If 
this is not the case, iterative learning algorithms are in order to on-line adjust the 
parameters. 
In the latter case, the actual derivative is replaced by an estimation while the error 
introduced by this approximation may be measured and treated as noise. The efficiency 
of such algorithms is quite satisfactory in most cases. 

4Automatic Agent Formation 

The performance of a system based on basis functions strongly depends on the choice of 
an adequate set of such functions. Similarly, in the design of an agent-based system, the 
selection of a set of agents is a crucial point. 
There are many choices when training such agent-based systems of the form described 
above. One may choose to select a constant set of agents and perform training by 
adjusting the agents' relevance or one may wish to allow the agents themselves to change 
depending on the specific problem at hand. The former choice permits the user to insert 
an arbitrary set of agents, train the system, and then read back the relevance of each agent 
while the latter allows various conventional, statistical, and other training algorithms to 
be applied in order to refine the agents and to optimally fit the training samples. As 
examples of such training algorithms we may consider the probabilistic general 
regression, the orthogonal least squares, the nearest neighborhood clustering, etc. 
So, basically, the following choices are available: 
• constant set of agents; 
• set of agents initialized with linguistic knowledge and adjusted during training; 
• automatically created agents in order to optimally fit the numerical training data 
In all the above cases, the agents' relevance are subject to adaptation. Moving from 
choice (i) to choice (iii) the approach from ‘completely intuitive’ becomes ‘completely 
mathematical’. It should be noted that agents may also be dynamically created and tested 
on-line by making use of genetic algorithms or other appropriate methods. 

5Exhaustive Agent Generation 

Case-specific algorithms for determining the system's agents are also possible. For 
example, consider the case of a system with 2 inputs (x1 and x2) and 1 output (y), defined 
on the universes U, V, and W respectively. Assume that we use fuzzy agents and that we 
define 3 fuzzy variables on U (USMALL, UMEDIUM, and ULARGE), 3 on V (VSMALL, 
VMEDIUM, and VLARGE), and 2 on W (WSMALL and WLARGE). Then there exist 18 
different possible fuzzy rules: 

IF x1 is USMALL AND x2 is VSMALL THEN y is WSMALL 
IF x1 is USMALL AND x2 is VSMALL THEN y is WLARGE 

. . . 
IF x1 is ULARGE AND x2 is VLARGE THEN y is WLARGE 

A possible training algorithm for such a system could invoke the following steps: 



• exhaustively formulate all the possible fuzzy rules; 
• adjust the system's parameters using the training samples and any of the algorithms 

mentioned above; 
• purge the rules whose relevance degrees achieved the lowest values throughout their 

universes of discourse; 
• re-train the system using only the remaining agents. 

6. A Case Study: Mobile Robot Path Planning 

To highlight some of the main points of the proposed agent-based architecture, a local 
path planning system for the navigation of an indoor mobile robot in unknown 
environments will be addressed using such a system. Parts of this system were presented 
in a different context in [45, 46, 47]. 

6.1. General Issues 

The research on path planning has been traditionally divided in two major categories, 
namely global path planning and local path planning. 
Global path planning makes use of some a priori knowledge relating to the environment 
and the objects that consist it, in order to move the robot towards a target position. 
Possessing prior knowledge, the task actually translates into finding an optimal path, 
where “optimal” translates into minimization of a predefined criterion such as travel time, 
path length, path smoothness, etc. To this end, many methods have been proposed in the 
technical literature, which differ in the approach, the knowledge representation scheme 
etc., some of the most important being: 
• the configuration space method [48], developed by Lozano-Perez [49] and other 

researchers [50], 
• the generalized Voronoi diagrams [51] 
• the methods of artificial intelligence [52], and 
• the artificial magnetic field methodology [53]. 
The demand of optimality, necessitates full and precise a priori knowledge of the 
environment; a condition that cannot always be true or even realistic. That is the reason 
why local path planning techniques, capable to deal with generally unknown 
environments, have emerged. 
In local path planning the system minimally relies on a priori knowledge: its main source 
of data is a set of sensors. Dividing the research work in the field of local path planning 
into categories is not a straightforward task. Considering the kind of sensors used, one 
can find algorithms that make use of cameras [54], simple distance measuring sensors 
[55], etc. Quite popular in the field of obstacle avoidance are the hierarchical model [56], 
and lately Saridis’ intelligent control scheme [57], often making use of fuzzy control 
methodology [58]. Brooks [59] combines asynchronous units together, to each one of 
which a different role is assigned. However, these units are not independent since they 
communicate to each other. In a work of Boem and Cho [60], a combination of two 
independent units is presented, the one of which has an obstacle-avoidance behavior and 
the other having a goal-seeking behavior. Combination of these two units (which do not 
communicate to each other), is achieved through a ‘behavior-selector’ which makes use 



of a bistable switching function to activate each unit. 
The complex behavior required to lead a robot towards a target position can be 
reproduced by a combination of simpler independent ‘behavioristic elements’, e.g. 
heuristics of the form ‘move towards the obstacles’, ‘move along the goal direction’, 
‘avoid the obstacles that move to your direction’, etc. Many such antagonistic 
behavioristic elements which are appropriate for different circumstances may be taken 
into account and may be implemented and operate independently. Some of them make 
use of the sensor measurements while others do not. An appropriate combination of such 
elements may lead to a system that exhibits the desired overall behavior. 
This ‘behavior-based’ design technique for both the control of dynamic systems [61] and 
for mobile-robot path planning [62, 63], attracts increasingly more interest and an 
increasing number of related publications appear in the technical literature. 

6.2. Problem Formulation 

The problem addressed here is local path planning for an indoor mobile robot. In local 
path planning, a robot equipped with sensors is requested to move from a starting 
position (source) to a target position (destination) avoiding any obstacles. 
No assumptions are made relatively to the environment except that it is planar; it is 
considered to be completely unknown and uncertain. Since no knowledge of the 
environment is assumed path optimality cannot be guaranteed. Moreover, the system 
must also be capable of compensating for sensor imprecision and failures. The above 
characteristics, i.e. complexity, uncertainty, and imprecision, qualify fuzzy logic as good 
framework for the local path planning problem. 
We assume that only the direction of the target is known at every step and not its exact 
coordinates. Furthermore, we assume that the robot has N distance sensors placed 
uniformly. This means that each sensor's beam is directed 360°/N degrees from its 
neighboring sensors. Assuming a body attached coordinate frame having its Ox axis 
coinciding with the direction of the target, the first sensor is placed on Ox. Fig. 2 shows 
the directions of the beams in the case of 16 distance sensors (N=16). Common problems 
arising from the “blindness” of the robot between the sensors’ beams, are faced by 
restricting its motion, at each point, only along the direction of any of the beams. 

 

Fig. 2. The directions of the beams (N=16) 

6.3. Structure of the Proposed Model 

Agents based on fuzzy logic are a fair choice for implementing the system’s building 
blocks since: 



• fuzzy logic provides the simplest way to translate heuristic rules to a computational 
algorithm, 

• the system needs to deal with the uncertainty introduced by the sensor measurements, 
• the domain of responsibility of each agent is by its nature fuzzy, and 
• efficient algorithms exist to train fuzzy rules-based systems using numerical data [64, 

65, 66]. 
The proposed model consists of such n agents connected to the sensors (i.e. their behavior 
depends on the specific circumstances) and m agents that do not depend on the inputs. 
Every agent produces an output independently from all the other agents. All these partial 
outputs are appropriately merged by the behavior coordinator. The sensor data is also fed 
to the behavior coordinator which may also have some kind of memory in order to 
recognize more efficiently the present situation. A threshold/selection module may be 
added after the merging module to ensure that a direction leading closer to an obstacle 
than a pre-specified value will certainly be rejected. This threshold value depends on the 
dimensions of the robot and the nature of the specific problem at hand. This unit works in 
a binary way: either a direction is safe or not, since collision is not a fuzzy concept! 

Sensors AgentA-1

AgentA-2

AgentA-n

AgentB-1

AgentB-m

AgentB-2

Behavior
Coordinator

Merging

Output  
Fig. 3. General structure of the proposed model 

Assuming that the path planning system has k inputs (coming from the sensors) and k 
outputs only one of which is non-zero each time (indicating the direction to be followed), 
we can easily understand that this system has to implement a (very complex) function of 
k inputs and k outputs. Of course, if we additionally desire to control the velocity and/or 
the acceleration of the robot, more outputs would be required. 
Under this agent-based perspective, it is attempted to divide the universe of discourse into 
subsets, and to implement the subsystems that approximate this function in every one of 
these subsets. Some difficulties arise during the determination of the subsets in which 
every subsystem is supposed to operate. This partially results from the fact that these 
subsets may be overlapping. As it will be shown in the next section, we use heuristic 
rules to determine the optimal domains of discourse of every agent. To this end, we will 
implement the behavior coordinator system based on fuzzy logic methods. 
Our aim is to build a system capable of successfully driving the robot from the source to 
the destination and having two additional features: 
• ability to host a priori navigational knowledge in the form of human-like, heuristic, 

linguistic rules; 



• ability to learn and refine its performance through adaptation. 
The system of Fig. 3 possesses both these features and will be used as a base for solving 
the local path planning problem. The overall system architecture used for the path 
planning problem is given in Fig. 4. 
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Fig. 4. The overall structure of the path planning system 

The overall system includes a supervisory system (SS). This system is assumed to have 
full knowledge of the environment during the learning phase and will be used to 
supervise the learning procedure of the system in the sense of providing the ‘correct 
outputs’ and error values required by the back-propagation algorithm. 
We will use the system described above in the following way: the system will accept as 
inputs the sensor measurements, denoted s[i], and produce as outputs evaluations of the 
fitness of each direction of motion, denoted d[j]. The robot will eventually move along 
the direction receiving the highest fitness. It is quite reasonable that the possible 
directions of motion should coincide with the directions of the sensor beams since we 
know nothing about the intermediate directions which could be occupied by obstacles. 
The fitness of the i-th direction is expected to be depend the sensor measurements along 
that direction and, in some cases, on the measurements along some neighboring 
directions. For example an obstacle avoiding rule could be expressed as: 

IF s[i] is SMALL THEN d[i] is SMALL 
On the other hand, a rule that forces the robot to enter corridors or rooms while searching 
for the target, could be expressed as: 

IF s[i] is LARGE AND s[i-1] is SMALL AND s[i+1] is SMALL 
THEN d[i] is SMALL 

Such rules are used to determine the fitness of each of the possible directions of motion 
and then the direction with highest fitness will be followed by the robot. 
One question of main importance during the design of a fuzzy inference engine is the 
interpretation of the fuzzy IF-THEN rules. Such a rule is usually interpreted as a fuzzy 
implication, i.e. as a special kind of fuzzy relation defined on the Cartesian product of the 
input and output universes of discourse. But, there are various kinds of formulas used for 
fuzzy implication, e.g. fuzzy conjunction, fuzzy disjunction, generalized modus ponens 
(GMP), etc. 
The choice of the appropriate interpretation of the fuzzy implication strongly affects the 
generalization behavior of the fuzzy rules, i.e. their response to unknown inputs. 



Different interpretations lead to fuzzy systems of different generalization properties, each 
one being appropriate for different problems. On the basis of these properties, fuzzy 
implication interpretations may be compared over certain intuitive criteria [47, 64]. 
In our case, all rules should generalize in such a way that a rule of the type: 

IF x is SMALL THEN y is SMALL 
automatically implies: 

IF x is MEDIUM THEN y is MEDIUM 
IF x is LARGE THEN y is LARGE 

IF x is VERY LARGE THEN y is VERY LARGE 
etc. 

Similarly, the rule: 
IF x is SMALL THEN y is LARGE 

should imply: 
IF x is MEDIUM THEN y is MEDIUM 

IF x is LARGE THEN y is SMALL 
IF x is VERY LARGE THEN y is VERY SMALL 

etc. 
In [47] neural networks are used to guarantee that the desired behavior (expressed in the 
form of appropriate criteria to be satisfied) is exhibited by a fuzzy rule. 

6.4. Using a Fixed Set of Agents 

Any of the methods for the rule generation described above may be used for the path 
planning system. Thus, a constant set of agents may be created using linguistic 
knowledge in the form of fuzzy IF-THEN rules or rules may automatically be created 
based on sample input-output data and clustering or other techniques. In all cases, these 
rules may then be refined by a learning algorithm. 
A fixed set of seven fuzzy and one ‘neural’ agent was used do evaluate the performance 
of the resulting system through simulation. The detailed form of the system for the case 
of a fixed set of agents is pictorially represented in Fig. 5. 
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Fig. 5. The proposed path-planning system 

The output of the k sensors is fed to the appropriate agents (the input to the fifth and the 
eighth agent is the previous states from the memory), and every agent assigns k priorities, 
one for every direction. The output of every agent is then multiplied by a weight that 
characterizes its degree of relevance and is provided by the behavior coordinator. The 
result is finally brought to the merging subsystem, where the priorities supplied by all the 
agents for a specific direction are multiplied. 
To conclude the algorithm, a step along the direction of maximum priority takes place, 
and the process is continuously repeated until the robot reaches the target position. 
It is important to highlight that all the agents are functioning independently from each 
other and the only duty of the behavior selector is to assign a degree of relevance to each 
one of them. Thus, problem decomposition is taking place, since the original problem is 
divided into eight much simpler sub-problems, with the avoided complexity not being 
transferred to the task of recomposing the overall output from the partial outputs. 
In the following operation of every agent will be analyzed along with the heuristic rules 
used to determine its domain of responsibility. 



Agent 1: Approach Obstacles 

 

This agent forces the robot to move close to the obstacles. This is 
necessary for two reasons. The first reason is that by getting close to 
the obstacles, the robot increases its resolution since it is easier to 
recognize small corridors or passes among the obstacles which may 
sometimes be the only way to reach the target position. The second 
reason is that this agent enables the robot to actually enter inside an 
identified corridor. This would have been avoided if no such rule 
existed since other directions would look more appealing. This 
agent is relevant for handling situations where the distances 
measured by the sensors are similar (i.e. small differences between 
them appear). 

Agent 2: Avoid Obstacles 

 

The second agent forces the robot to move away from the obstacles, 
i.e. it favors the directions along which long distances are measured. 
Such a behavior is useful since the further the robot moves from the 
obstacles, the safer the produced trajectory is. Moreover, this 
provides a way to optimize our trajectories in the sense of following 
smoother, less perturbed paths. This agent is relevant for situations 
where the obstacles are moving fast or when the distances measured 
by the sensors differ a lot. 

Agent 3: Move Towards the Target 

 

The third agent is a system that forces the robot to move to the 
direction of the target. Its usefulness is obvious since this direction, 
along with its neighboring ones, should be the most favorable. 
However, this does not always lead to desirable results, since when 
we are close to obstacles it is more important to avoid them than to 
move towards the target. So this agent is relevant for handling cases 
where there is enough space to move along the target direction 
and/or its neighbor directions. 

Agent 4: Move Close and Avoid 

 

The role of this agent is to improve the trajectories with regard to 
the distance covered. Its logic is to avoid the obstacles while moving 
as close as possible to them. These directions can be identified by 
large differences between the distances measured along two 
successive directions. This agent is almost always relevant except of 
some situations that will be considered later. 

Agent 5: Punish All the Other Agents 
The fifth agent is actually a subsystem that is activated periodically and checks if any 
progress has been made, i.e. if the current state relatively to the one evaluated during its 
last activation is ‘improved’. If no significant progress is observed, a ‘reaction’ process is 
initiated, the role of which is to suppress the action of all the other agents for a specific 
number of steps, and to lead the robot to the most unknown directions (i.e. directions 
leading to positions it has the least visited before). This agent is very important and has a 
global relevance since moving around with no progress is always undesirable and the 



agents that lead to this situation should be ‘punished’. Punishment has the meaning of 
ignoring, for some time, what these agents suggest. The unknown positions are 
identifiable by the help of an associative memory implemented using neural network 
concepts. 

Agent 6: Avoid Changing the Direction of Motion 

 

This agent plays the role of a ‘momentum’ term by helping the robot 
to avoid continuously changing its direction of motion. If a direction 
is chosen, the robot shouldn't easily change it except, of course, if 
another direction appears to be much more promising. This agent is 
relevant for handling situations where the direction leading to the 
target (and its close neighbors), are forbidden due to the presence of 
obstacles at small distances. When the robot initiates a maneuver to 
overcome an obstacle standing along its way to the target (which 
might temporarily drive it away from the target), it should keep up 
with it for a sufficient number of steps. In such a situation, 
combined actions of this agent and agent 7 are required. 

Agent 7: Move Away from the Target 

 

The seventh agent is implemented in such a way that it drives the 
robot away from the target! Its presence in the system is necessary 
since this may be the best thing to do under certain circumstances. 
This is the system's defense against getting trapped into a ‘local 
minimum’. Without the presence of such an agent, it would be 
difficult for the robot to achieve this. The circumstances under 
which this agent is relevant, are the ones where the third agent is the 
least relevant, i.e. the complement of the relevance domain of the 
third agent. 

Agent 8: Avoid Foreseen Situations 

 

The eighth agent is responsible for avoiding getting involved into 
foreseen situations. Obviously, these should be avoided since they 
have been examined in the past and a path, if existed, would have 
already been found. This agent also helps the robot to avoid dead-
ends caused by continuously looping around the same positions. To 
this end, the neural associative memory mentioned earlier is used. 
By adopting neural methods the system inherits the very important 
feature of generalization, i.e. not only the already visited situations 
but also their neighbors will be avoided (to a lesser, of course, 
degree). Path planning into a drastically changing environment 
(where a large number of continuously moving obstacles exist, e.g. 
doors opening and closing, corridors being blocked by people, etc.) 
this agent should be suppressed since past situations should be 
reexamined. 

This set of agents is not, of course, the only possible set one can think of. According to 
the specific problem at hand and the specific demands, we may add or remove agents 
from the system. The system is flexible enough to allow us to directly insert or delete 
agents in a straightforward manner. The way each agent is implemented, can be 
determined according to the role this agent is supposed to play in the system. Fuzzy logic 



provides a good solution when problems related to the accuracy of the sensor 
measurements occur. Neural networks, on the other hand, may enrich the system with 
learning/adaptation capabilities. Finally, simple algorithmic procedures may prove to be 
efficient enough under certain circumstances. 
The behavior coordinator consists of eight different subparts, one for each agent, and 
provides to each one of them the heuristics needed to determine the domain of relevance 
of that agent. 

     

Fig. 6. Some representative paths 

7. Concluding Remarks 

It has been argued that multi-agent systems can respond to the flexibility and adaptivity 
objectives of modern robotic tasks by relying on individual agent autonomy and 
multiplication of complexity during synthesis/design. Designing a multi-agent robotic 
architecture corresponds therefore to identifying the appropriate decision points of the 
process in question and choosing the right structural decomposition grain. Several types 
of process decomposition into agents (task-based, physical or hybrid) have been 
examined and it has been found that generally decomposition should be driven by the 
criteria of control localization, knowledge decoupling and interaction minimization, 
applied across a set of reconfiguration and scaling directions. This way, decomposition 
becomes a reversible relation and is based on the golden law of decomposition: we 
decompose in a way that makes small changes have big effects or else makes the system 
scaleable. The decomposition principle was employed to address the problem of local 
path planning in unknown and uncertain environments: a general neurofuzzy multi-agent 
architecture was introduced and then specialized for the task at hand. A combination of a 
neural agent and a small number of fuzzy agents, has been shown adequate to produce 
collision-free paths for the mobile robot. The emergent collective abilities of the system 
were proven to greatly surpass a simple enumeration of each agent’s separate abilities; a 
fact which is the essence of the decomposition principle. 
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