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Abstract 
This paper proposes a general methodology for 
solving specific categories of robotic problems. 
This methodology decomposes the problem to 
simpler ones, every one of which is faced by an 
appropriate agent-like subsystem. The overall 
output is produced by merging the outputs of these 
agents taking into account its "degree of 
responsibility". This way, a complex function's 
universe of discourse is broken down to "domain of 
responsibility" of the respective agents. 
This general methodology is then applied to solve 
the problem of path planning in unknown 
environment. To this end, every part of the system is 
specified and analyzed, and appropriate agents are 
defined. 
Some experimental results obtained through 
simulation are finally given. 
 
1. Introduction 
Autonomous mobile robots constitutes one of the 
most important fields of robotics and a very active 
research area for the last years. One of the key 
aspects in the mobile robots area is the path 
planning problem. The research on this problem 
has, for many years, been divided in two major 
categories, namely global path planning and local 
path planning. 
Global path planning makes use of some available 
a priori knowledge relative to the environment and 
the objects that consist it, in order to move the 
robot towards a target position. To this end, many 
methods have been proposed in the technical 
literature, which differ in the philosophy of the 
solving algorithm, the knowledge representation 
scheme, etc. Some of the most important methods 
are: 
• the configuration space method [1], developed by 

Lozano-Perez [2] and other researchers [3], 
• the generalized Voronoi diagrams [4] 
• the methods of artificial intelligence [5], and 
• lately a very interesting and promising approach: 

the artificial magnetic field methodology [6]. 

The common problem in all the above global path 
planning methods is the need of possessing full 
knowledge of the environment and the obstacles. In 
many cases this demand may not be satisfied. That 
is the reason why local path planning techniques, 
capable to deal with generally unknown 
environments, have been developed. 
In local path planning the robot makes use of 
information obtained by various sensors in order to 
successfully move to the target position. Dividing 
the research work in the field of local path planning 
into categories is not a straightforward task. 
Considering the kind of sensors used, one can find 
publications that make use of cameras [7], simple 
distance measuring sensors [8], etc. 
To deal with the uncertainty introduced by the 
sensor measurements, fuzzy logic methods have 
been proposed [9]. 
Quite popular in the field of obstacle avoidance are 
the hierarchical model [10], and lately Saridis’ 
intelligent control scheme [11], often making use of 
fuzzy control methodology [12]. Although the 
hierarchical model aims at reducing the large 
complexity of path planning, problems arise due to 
the strict hierarchy and sequential nature of 
execution. The reason for this is that the complexity 
introduced by the identification tasks and the tasks 
that require intelligence, is not faced but only 
transferred to higher levels. To the end of solving 
this problem, Brooks [13] combines asynchronous 
units together, to each one of which a different role 
is assigned. However, these units are not 
independent since they communicate to each other. 
In a recent work of Boem and Cho [14], a 
combination of two independent units is presented, 
the one of which has an obstacle-avoidance 
behaviour and the other having a goal-seeking 
behaviour. Combination of these two units (which 
do not communicate to each other), is achieved 
through a ‘behaviour-selector’ which makes use of 
a bistable switching function to activate each unit. 
The method proposed in this paper was inspired by 
Minsky’s theory [15] and extends the above logic. 
The complex behaviour required to lead a robot 



towards a target position can be reproduced by a 
combination of simpler independent ‘behaviouristic 
elements’, e.g. heuristics of the form ‘move 
towards the obstacles’, ‘move along the goal 
direction’, ‘avoid the obstacles that move to your 
direction’, etc. Many such antagonistic 
behaviouristic elements which are appropriate for 
different circumstances may be taken into account 
and may be implemented and operate 
independently. Some of them make use of the 
sensor measurements while others do not. An 
appropriate combination of such elements may lead 
to a system that exhibits the desired overall 
behaviour. 
 
2. Structure of the Proposed Model 
The proposed model is first presented in its general 
form and will then be specialized to the path 
planning problem by appropriately configuring 
each part. The system’s general form is given in 
Fig. 1. It consists of n  agents connected to the 
sensors (i.e. their behaviour depends on the specific 
circumstances) and m  agents that do not depend on 
the inputs. Every agent produces an output 
independently from all the other agents. All these 
partial outputs are appropriately merged by the 
behaviour coordinator. The sensor data is input to 
the behaviour coordinator which may also have 
some kind of memory in order to recognize more 
efficiently the present situation. 
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Fig. 1: General structure of the proposed model 

 
Each agent is implemented in such a way that a 
specific behaviour, appropriate for some specific 
situations, is exhibited. This may be easily achieved 
by using conventional algorithmic methods, or 
fuzzy system methods, or neural methods (when 
adaptation is desirable). The complexity and 
intelligence of the system lies on the way the partial 

outputs of the agents are merged, i.e. on the way 
the overall system output is produced. The 
approach adopted here is the assignment of a 
weight to each agent's output that will determine its 
contribution to the overall output. This way, the 
restriction of activating a single agent at each time 
is overcome and we are lead to a combined decision 
depending on the degree that the advice of every 
agent is taken into account. 
Assuming that the path planning system has k  
inputs (coming from the sensors) and k  outputs 
only one of which is non-zero each time (indicating 
the direction to be followed), we can easily 
understand that this system has to implement a 
(very complex) function of k  inputs and k  
outputs. Of course, if we additionally desire to 
control the velocity and/or the acceleration of the 
robot, more outputs would be required. With the 
proposed method we attempt to divide the universe 
of discourse into subsets, and to implement the 
subsystems that approximate this function in every 
one of these subsets. Some difficulties arise during 
the determination of the subsets in which every 
subsystem is supposed to operate. This partially 
results from the fact that these subsets may be 
overlapping. As it will be shown in the next 
section, we use heuristic rules to determine the 
optimal domains of discourse of  every agent. To 
this end, we will implement the behaviour 
coordinator system based on fuzzy logic methods. 
 
3. Development of a Path Planning System 
In this section a system is developed that deals with 
the path planning problem in a completely 
unknown environment in the presence of obstacles, 
where some restrictions (that will be discussed 
later) apply. Let us assume that we must drive a 
robot in a two-dimensional space from a starting 
position to a target position. The only thing known 
about the target is the direction connecting the 
robot to it (not the target's actual position). To 
accomplish this task we make use of k  distance 
sensors which are uniformly positioned on the 
robot, i.e. each sensor is directed 360°/k  from the 
previous and the next one. Let's assume that a 
body-attached Cartesian coordinate system has its 
Ox axis along the direction of the target position. 
This is the direction of the first sensor. We force k  
to be multiple of 4 in order to achieve a smooth 
placement of the sensors along the primary axes. 
This technique was successfully used in [9] for 
solving the same problem. The system that will be 
presented here, is based on the method developed in 
the previous section and is pictorially represented 
in Fig. 2. 



The output of the k  sensors is fed to the 
appropriate agents (the input to the fifth and the 
eighth agent is the previous states from the 
memory), and every agent assigns k  priorities, one 
for every direction. The output of every agent is 
then multiplied by a weight that characterizes its 
degree of "responsibility" and is provided by the 
behaviour coordinator. The result is finally brought 
to the merging subsystem, where the priorities 
supplied by all the agents for a specific direction 
are multiplied. The threshold unit ensures that a 
direction leading closer to an obstacle than a 
prespecified value will certainly be rejected. This 
threshold value depends on the dimensions of the 

robot and the nature of the specific problem at 
hand. This unit works in a binary way: either a 
direction is safe or not, since collision is not a fuzzy 
concept! 
To conclude the algorithm, a step along the 
direction of maximum priority takes place, and the 
process is continuously repeated until the robot 
reaches the target position. 
It is important to highlight that all the agents are 
functioning independently from each other and the 
only duty of the behaviour selector is to assign a 
degree of "responsibility" to each one of them. 
Thus, problem decomposition is taking place, since 
the original problem is divided into eight much 
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Fig. 2. The proposed path-planning system 

 



simpler subproblems, with the avoided complexity 
not being transferred to the task of recomposing the 
overall output from the partial outputs. 
In the following we will analyse the operation of 
every agent along with the heuristic rules used to 
determine its domain of responsibility. 
 
The first agent is a system that forces the robot to 
move close to the obstacles. This is necessary for 
two reasons. The first reason is that by getting close 
to the obstacles, the robot increases its resolution 
since it is easier to recognize small corridors or 
passes among the obstacles which may sometimes 
be the only way to reach the target position. The 
second reason is that this agent enables the robot to 
actually enter inside an identified corridor. This 
would have been avoided if no such rule existed 
since other directions would look more appealing. 
This agent is appropriate ("responsible") for 
handling situations where the distances measured 
by the sensors are similar (i.e. small differences 
between them appear). 
The second agent is a system that forces the robot 
to move away from the obstacles, i.e. it favours the 
directions along which long distances are measured. 
This is useful firstly because the further the robot 
moves from the obstacles, the safer the produced 
trajectory is. Moreover, this provides a way to 
optimize our trajectories. This agent is responsible 
for situations where the obstacles are moving fast 
or when the distances measured by the sensors 
differ a lot. 
The third agent is a system that forces the robot to 
move to the direction of the target. Its usefulness is 
obvious since this direction, along with its 
neighbouring ones, should be the most favourable. 
However, this does not always lead to desirable 
results, since when we are close to obstacles it is 
more important to avoid them than to move towards 
the target. So this agent is responsible for handling 
cases where there is enough space to move along 
the target direction and/or its neighbour directions. 
The role of the fourth agent is to improve the 
trajectories with regard to the distance covered. Its 
logic is to avoid the obstacles while moving as 
close as possible to them. These directions can be 
identified by large differences between the 
distances measured along two successive 
directions. This agent is almost always 
"responsible" except of some situations that will be 
considered later. 
The fifth agent is a subsystem that is activated 
periodically and checks if any progress has been 
made, i.e. if the current state relatively to the one 
evaluated during its last activation is "improved". If 
no significant progress is observed, a "reaction" 

process is initiated, the role of which is to suppress 
the action of all the other agents for a specific 
number of steps, and to lead the robot to the most 
unknown directions (i.e. directions leading to 
positions it has the least visited before). This agent 
is very important and has a global responsibility 
since moving around with no progress is always 
undesirable and the agents that lead to this situation 
should be "punished". Punishment has the meaning 
of ignoring, for some time, what these agents 
suggest. The unknown positions are identifiable by 
the help of an associative memory implemented 
using neural network concepts. 
The sixth agent is a subsystem that helps the robot 
avoid to continuously change its direction of 
motion. If a direction is chosen, the robot shouldn't 
easily change it except, of course, if another 
direction appears to be much more promising. This 
agent is responsible for handling situations where 
the direction leading to the target (and its close 
neighbours,) are forbidden due to the presence of 
obstacles at small distances. 
The seventh agent is implemented in such a way 
that it drives the robot away from the target! Its 
presence in the system is necessary since this may 
be the best thing to do under certain circumstances. 
This is the system's defence against getting trapped 
into a "local minimum". Without the presence of 
such an agent, it would be difficult for the robot to 
achieve this. The circumstances under which this 
agent is to be responsible, are the ones where the 
third agent is the least responsible, i.e. the 
complement of the responsibility domain of the 
third agent. 
The eighth agent is responsible to avoid getting 
involved into foreseen situations. Obviously, these 
should be avoided since they are examined in the 
past and a path, if existed, would have already been 
found. This agent also helps the robot to avoid 
deadends caused by continuously looping around 
the same positions. To this end, the neural 
associative memory mentioned earlier is used. By 
adopting neural methods the system inherits the 
very important feature of generalization, i.e. not 
only the already visited situations but also their 
neighbours will be avoided (to a lesser, of course, 
degree). 
This set of agents is not, of course, the only 
possible set one can think of. According to the 
specific problem at hand and the specific demands, 
we may add or remove agents from the system. The 
system is flexible enough to allow us to directly 
insert or delete agents in a straightforward manner. 
The way each agent is implemented, can be 
determined according to the role this agent is 
supposed to play in the system. Fuzzy logic 



provides a good solution when problems related to 
the accuracy of the sensor measurements occur. 
Neural networks, on the other hand, may enrich the 
system with learning/adaptation capabilities. 
Finally, simple algorithmic procedures may prove 
to be efficient enough under certain circumstances. 
The behaviour coordinator consists of eight 
different subparts, one for each agent, and provides 
to each one of them the heuristics needed to 
determine the domain of  responsibility of that 
agent. The method used here is based on fuzzy 
systems theory for three major reasons: 
• fuzzy logic provides the simplest way to translate 

heuristic rules to a computational algorithm, 
• the system needs to deal with the uncertainty 

introduced by the sensor measurements, and 
• the domain of responsibility of each agent is, by 

its nature, fuzzy. 
Presently, we are working on the completion of this 
system via neurofuzzy techniques so as to improve 
the fuzzy part of the system. These methods have 
become quite popular recently and are continuously 
being improved. In [16] and [17] a quite 
representative sample of the work in this research 
area is presented. 
A first version of the system (without any 
neurofuzzy techniques included) has already been 
implemented and the results are being shown in the 
Figures 3 and 4. 
 
4. Results 
These figures illustrate the division of the space 
into k  directions (here k =16 ), and some demo 
paths obtained using a simulation program written 
in C++ language. In each case, various parameters 
where altered. 
 
5. Conclusions 
The method proposed in this paper is very general 
and may be applied in many robotic problems. One 
of the advantages of this method is its intrinsic 
flexibility, which extensively assists the 
implementation of the system. One of the 
disadvantages that we are trying to avoid through 
the use of neurofuzzy techniques, is the difficulty 
of determining the domain of responsibility of each 
agent, and the need of explicitly stating it by the 
appropriate heuristic rules. 
 

 
Fig. 3: The division to directions 
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Fig. 4: Some representative paths 
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