

An Agent-Like Architecture for Autonomous

Robot Motion in Unknown Environment
G. B. Stamou, S. N. Raptis, and S. G. Tzafestas

Intelligent Robotics and Control Unit

National Technical University of Athens
Zografou 15773, Athens, Greece

Abstract
This paper proposes a general methodology for
solving specific categories of robotic problems.
This methodology decomposes the problem to
simpler ones, every one of which is faced by an
appropriate agent-like subsystem. The overall
output is produced by merging the outputs of these
agents taking into account its "degree of
responsibility". This way, a complex function's
universe of discourse is broken down to "domain of
responsibility" of the respective agents.
This general methodology is then applied to solve
the problem of path planning in unknown
environment. To this end, every part of the system is
specified and analyzed, and appropriate agents are
defined.
Some experimental results obtained through
simulation are finally given.

1. Introduction
Autonomous mobile robots constitutes one of the
most important fields of robotics and a very active
research area for the last years. One of the key
aspects in the mobile robots area is the path
planning problem. The research on this problem
has, for many years, been divided in two major
categories, namely global path planning and local
path planning.
Global path planning makes use of some available
a priori knowledge relative to the environment and
the objects that consist it, in order to move the
robot towards a target position. To this end, many
methods have been proposed in the technical
literature, which differ in the philosophy of the
solving algorithm, the knowledge representation
scheme, etc. Some of the most important methods
are:
• the configuration space method [1], developed by

Lozano-Perez [2] and other researchers [3],
• the generalized Voronoi diagrams [4]
• the methods of artificial intelligence [5], and
• lately a very interesting and promising approach:

the artificial magnetic field methodology [6].

The common problem in all the above global path
planning methods is the need of possessing full
knowledge of the environment and the obstacles. In
many cases this demand may not be satisfied. That
is the reason why local path planning techniques,
capable to deal with generally unknown
environments, have been developed.
In local path planning the robot makes use of
information obtained by various sensors in order to
successfully move to the target position. Dividing
the research work in the field of local path planning
into categories is not a straightforward task.
Considering the kind of sensors used, one can find
publications that make use of cameras [7], simple
distance measuring sensors [8], etc.
To deal with the uncertainty introduced by the
sensor measurements, fuzzy logic methods have
been proposed [9].
Quite popular in the field of obstacle avoidance are
the hierarchical model [10], and lately Saridis’
intelligent control scheme [11], often making use of
fuzzy control methodology [12]. Although the
hierarchical model aims at reducing the large
complexity of path planning, problems arise due to
the strict hierarchy and sequential nature of
execution. The reason for this is that the complexity
introduced by the identification tasks and the tasks
that require intelligence, is not faced but only
transferred to higher levels. To the end of solving
this problem, Brooks [13] combines asynchronous
units together, to each one of which a different role
is assigned. However, these units are not
independent since they communicate to each other.
In a recent work of Boem and Cho [14], a
combination of two independent units is presented,
the one of which has an obstacle-avoidance
behaviour and the other having a goal-seeking
behaviour. Combination of these two units (which
do not communicate to each other), is achieved
through a ‘behaviour-selector’ which makes use of
a bistable switching function to activate each unit.
The method proposed in this paper was inspired by
Minsky’s theory [15] and extends the above logic.
The complex behaviour required to lead a robot

towards a target position can be reproduced by a
combination of simpler independent ‘behaviouristic
elements’, e.g. heuristics of the form ‘move
towards the obstacles’, ‘move along the goal
direction’, ‘avoid the obstacles that move to your
direction’, etc. Many such antagonistic
behaviouristic elements which are appropriate for
different circumstances may be taken into account
and may be implemented and operate
independently. Some of them make use of the
sensor measurements while others do not. An
appropriate combination of such elements may lead
to a system that exhibits the desired overall
behaviour.

2. Structure of the Proposed Model
The proposed model is first presented in its general
form and will then be specialized to the path
planning problem by appropriately configuring
each part. The system’s general form is given in
Fig. 1. It consists of n agents connected to the
sensors (i.e. their behaviour depends on the specific
circumstances) and m agents that do not depend on
the inputs. Every agent produces an output
independently from all the other agents. All these
partial outputs are appropriately merged by the
behaviour coordinator. The sensor data is input to
the behaviour coordinator which may also have
some kind of memory in order to recognize more
efficiently the present situation.

AgentB-m

AgentB-2

AgentB-1

AgentA-n

AgentA-2

AgentA-1

Merging

Sensors

Behaviour
Coordinator

.

. . .

Output
Fig. 1: General structure of the proposed model

Each agent is implemented in such a way that a
specific behaviour, appropriate for some specific
situations, is exhibited. This may be easily achieved
by using conventional algorithmic methods, or
fuzzy system methods, or neural methods (when
adaptation is desirable). The complexity and
intelligence of the system lies on the way the partial

outputs of the agents are merged, i.e. on the way
the overall system output is produced. The
approach adopted here is the assignment of a
weight to each agent's output that will determine its
contribution to the overall output. This way, the
restriction of activating a single agent at each time
is overcome and we are lead to a combined decision
depending on the degree that the advice of every
agent is taken into account.
Assuming that the path planning system has k
inputs (coming from the sensors) and k outputs
only one of which is non-zero each time (indicating
the direction to be followed), we can easily
understand that this system has to implement a
(very complex) function of k inputs and k
outputs. Of course, if we additionally desire to
control the velocity and/or the acceleration of the
robot, more outputs would be required. With the
proposed method we attempt to divide the universe
of discourse into subsets, and to implement the
subsystems that approximate this function in every
one of these subsets. Some difficulties arise during
the determination of the subsets in which every
subsystem is supposed to operate. This partially
results from the fact that these subsets may be
overlapping. As it will be shown in the next
section, we use heuristic rules to determine the
optimal domains of discourse of every agent. To
this end, we will implement the behaviour
coordinator system based on fuzzy logic methods.

3. Development of a Path Planning System
In this section a system is developed that deals with
the path planning problem in a completely
unknown environment in the presence of obstacles,
where some restrictions (that will be discussed
later) apply. Let us assume that we must drive a
robot in a two-dimensional space from a starting
position to a target position. The only thing known
about the target is the direction connecting the
robot to it (not the target's actual position). To
accomplish this task we make use of k distance
sensors which are uniformly positioned on the
robot, i.e. each sensor is directed 360°/k from the
previous and the next one. Let's assume that a
body-attached Cartesian coordinate system has its
Ox axis along the direction of the target position.
This is the direction of the first sensor. We force k
to be multiple of 4 in order to achieve a smooth
placement of the sensors along the primary axes.
This technique was successfully used in [9] for
solving the same problem. The system that will be
presented here, is based on the method developed in
the previous section and is pictorially represented
in Fig. 2.

The output of the k sensors is fed to the
appropriate agents (the input to the fifth and the
eighth agent is the previous states from the
memory), and every agent assigns k priorities, one
for every direction. The output of every agent is
then multiplied by a weight that characterizes its
degree of "responsibility" and is provided by the
behaviour coordinator. The result is finally brought
to the merging subsystem, where the priorities
supplied by all the agents for a specific direction
are multiplied. The threshold unit ensures that a
direction leading closer to an obstacle than a
prespecified value will certainly be rejected. This
threshold value depends on the dimensions of the

robot and the nature of the specific problem at
hand. This unit works in a binary way: either a
direction is safe or not, since collision is not a fuzzy
concept!
To conclude the algorithm, a step along the
direction of maximum priority takes place, and the
process is continuously repeated until the robot
reaches the target position.
It is important to highlight that all the agents are
functioning independently from each other and the
only duty of the behaviour selector is to assign a
degree of "responsibility" to each one of them.
Thus, problem decomposition is taking place, since
the original problem is divided into eight much

Memory Behaviour
Coordinator

Agent1

Agent2

Agent3

Agent4

Agent5

Agent6

Agent7

Agent8

Sensors

Approach
Obstacles

Avoid
Obstacles

Move towards
the target

Move close
and avoid

Punish all the
other agents

Avoid changing the
direction of motion

Move away from
the target

Avoid foreseen
situations

Output

MergingThreshold/Selection

MergingMerging

k

k

k

k

k

k

k

k

k

k

k

k

k

k

Fig. 2. The proposed path-planning system

simpler subproblems, with the avoided complexity
not being transferred to the task of recomposing the
overall output from the partial outputs.
In the following we will analyse the operation of
every agent along with the heuristic rules used to
determine its domain of responsibility.

The first agent is a system that forces the robot to
move close to the obstacles. This is necessary for
two reasons. The first reason is that by getting close
to the obstacles, the robot increases its resolution
since it is easier to recognize small corridors or
passes among the obstacles which may sometimes
be the only way to reach the target position. The
second reason is that this agent enables the robot to
actually enter inside an identified corridor. This
would have been avoided if no such rule existed
since other directions would look more appealing.
This agent is appropriate ("responsible") for
handling situations where the distances measured
by the sensors are similar (i.e. small differences
between them appear).
The second agent is a system that forces the robot
to move away from the obstacles, i.e. it favours the
directions along which long distances are measured.
This is useful firstly because the further the robot
moves from the obstacles, the safer the produced
trajectory is. Moreover, this provides a way to
optimize our trajectories. This agent is responsible
for situations where the obstacles are moving fast
or when the distances measured by the sensors
differ a lot.
The third agent is a system that forces the robot to
move to the direction of the target. Its usefulness is
obvious since this direction, along with its
neighbouring ones, should be the most favourable.
However, this does not always lead to desirable
results, since when we are close to obstacles it is
more important to avoid them than to move towards
the target. So this agent is responsible for handling
cases where there is enough space to move along
the target direction and/or its neighbour directions.
The role of the fourth agent is to improve the
trajectories with regard to the distance covered. Its
logic is to avoid the obstacles while moving as
close as possible to them. These directions can be
identified by large differences between the
distances measured along two successive
directions. This agent is almost always
"responsible" except of some situations that will be
considered later.
The fifth agent is a subsystem that is activated
periodically and checks if any progress has been
made, i.e. if the current state relatively to the one
evaluated during its last activation is "improved". If
no significant progress is observed, a "reaction"

process is initiated, the role of which is to suppress
the action of all the other agents for a specific
number of steps, and to lead the robot to the most
unknown directions (i.e. directions leading to
positions it has the least visited before). This agent
is very important and has a global responsibility
since moving around with no progress is always
undesirable and the agents that lead to this situation
should be "punished". Punishment has the meaning
of ignoring, for some time, what these agents
suggest. The unknown positions are identifiable by
the help of an associative memory implemented
using neural network concepts.
The sixth agent is a subsystem that helps the robot
avoid to continuously change its direction of
motion. If a direction is chosen, the robot shouldn't
easily change it except, of course, if another
direction appears to be much more promising. This
agent is responsible for handling situations where
the direction leading to the target (and its close
neighbours,) are forbidden due to the presence of
obstacles at small distances.
The seventh agent is implemented in such a way
that it drives the robot away from the target! Its
presence in the system is necessary since this may
be the best thing to do under certain circumstances.
This is the system's defence against getting trapped
into a "local minimum". Without the presence of
such an agent, it would be difficult for the robot to
achieve this. The circumstances under which this
agent is to be responsible, are the ones where the
third agent is the least responsible, i.e. the
complement of the responsibility domain of the
third agent.
The eighth agent is responsible to avoid getting
involved into foreseen situations. Obviously, these
should be avoided since they are examined in the
past and a path, if existed, would have already been
found. This agent also helps the robot to avoid
deadends caused by continuously looping around
the same positions. To this end, the neural
associative memory mentioned earlier is used. By
adopting neural methods the system inherits the
very important feature of generalization, i.e. not
only the already visited situations but also their
neighbours will be avoided (to a lesser, of course,
degree).
This set of agents is not, of course, the only
possible set one can think of. According to the
specific problem at hand and the specific demands,
we may add or remove agents from the system. The
system is flexible enough to allow us to directly
insert or delete agents in a straightforward manner.
The way each agent is implemented, can be
determined according to the role this agent is
supposed to play in the system. Fuzzy logic

provides a good solution when problems related to
the accuracy of the sensor measurements occur.
Neural networks, on the other hand, may enrich the
system with learning/adaptation capabilities.
Finally, simple algorithmic procedures may prove
to be efficient enough under certain circumstances.
The behaviour coordinator consists of eight
different subparts, one for each agent, and provides
to each one of them the heuristics needed to
determine the domain of responsibility of that
agent. The method used here is based on fuzzy
systems theory for three major reasons:
• fuzzy logic provides the simplest way to translate

heuristic rules to a computational algorithm,
• the system needs to deal with the uncertainty

introduced by the sensor measurements, and
• the domain of responsibility of each agent is, by

its nature, fuzzy.
Presently, we are working on the completion of this
system via neurofuzzy techniques so as to improve
the fuzzy part of the system. These methods have
become quite popular recently and are continuously
being improved. In [16] and [17] a quite
representative sample of the work in this research
area is presented.
A first version of the system (without any
neurofuzzy techniques included) has already been
implemented and the results are being shown in the
Figures 3 and 4.

4. Results
These figures illustrate the division of the space
into k directions (here k =16), and some demo
paths obtained using a simulation program written
in C++ language. In each case, various parameters
where altered.

5. Conclusions
The method proposed in this paper is very general
and may be applied in many robotic problems. One
of the advantages of this method is its intrinsic
flexibility, which extensively assists the
implementation of the system. One of the
disadvantages that we are trying to avoid through
the use of neurofuzzy techniques, is the difficulty
of determining the domain of responsibility of each
agent, and the need of explicitly stating it by the
appropriate heuristic rules.

Fig. 3: The division to directions

(a)

(b)

(c)

Fig. 4: Some representative paths
6. References
[1] Lozano-Perez, T. and Wesley, M. A., "An

Algorithm for Planning Collision-Free Paths
Among Polyhedral Obstacles", Comm. ACM,
Vol. 22, No. 10, 1979.

[2] Lozano-Perez, T., "Spatial Planning: A Spatial
Configuration Space Approach", IEEE Trans.
Computers, Vol. 32, No. 2, 1983.

[3] Brooks, R. A. and Lozano-Perez, T., "A
Subdivision Algorithm in Configuration Space
for Findpath with Rotation", IEEE Trans.
Systems, Man, and Cybernetics, Vol. 15, No.
2, 1985.

[4] Takahashi, O. and Schilling, R. J., "Motion
Planning in a Plane Using Generalized
Voronoi Diagrams", IEEE Trans. Robotics
and Automation, Vol. 5, No. 2, 1989.

[5] Kambhampati, S. and Davis, L. S.,
"Multiresolution Path Planning for Mobile
Robots", IEEE Journal of Robotics and
Automation, Vol. 2, No. 3, 1986.

[6] Lin, C. T. and Lee, C. S. G., "A Multi-Valued
Boltzmann Machine", IEEE Trans. Systems,
Man, and Cybernetics, Vol. 25, No. 4, 1995.

[7] Tsai, W. H. and Chen, Y. C., "Adaptive
Navigation of Automated Vehicles by Image
Analysis Techniques"

[8] Jarvis, R., "Distance Transform Based Path
Planning for Robot Navigation", in Recent
Trends in Mobile Robots (Zheng, Y. F., ed.),
World Scientific.

[9] Tzafestas, S. and Stamou, G., "A Fuzzy Model
for Autonomous Robots Path Planning", Proc.
EURISCON'94, Malaga, Spain, 1994.

[10] Fujimura, K. and Samet, H., "A Hierarchical
Strategy for Path Planning Among Moving

Obstacles", IEEE Trans. Robotics, Vol. 5, No.
1, 1989.

[11] Saridis, G. N., "Intelligent Robotic Control",
IEEE Trans. Automatic Control, Vol. 28, No.
5, 1983.

[12] Sawaragi, T., Itoh, K., Katai, O., and Iwai, S.,
"Integration of Symbolic Path-Planning and
Fuzzy Control for Intelligent Mobile Robot",
in Fuzzy Logic (Lowen, R. and Roubens, M.,
eds.), Kluwer, 1993.

[13] Brooks, R. A., "A Robust Layered Control
System For A Mobile Robot", IEEE Journal of
Robotics and Automation, Vol. 2, No. 1, 1986.

[14] Beom, H. R. and Cho, H. S., "A Sensor-Based
Navigation for a Mobile Robot Using Fuzzy
Logic and Reinforcement Learning", IEEE
Trans. System, Man, and Cybernetics, Vol. 25,
No. 3, 1995.

[15] Minsky, M. L., "Society of Mind", Simon &
Schuster, New York, 1986.

[16] Berenji, H. R. and Khedhar, P., "Learning and
Tuning Fuzzy Logic Controllers Through
Reinforcements", IEEE Trans. Neural
Networks, Vol. 3, No. 5, 1992.

[17] Lin, C. T. and Lee, C. S., "Reinforcement
Structure/Parameter Learning for Neural-
Network-Based Fuzzy Logic Control
Systems", IEEE Trans. Fuzzy Systems, Vol. 2,
No. 1, 1994.

